

© 2013 The Author. Journal compilation © 2013 Institute of Philosophy SAS

Organon F 20 (Supplementary Issue 2) 2013: 206-215

Action Models and their Induction

MICHAL ČERTICKÝ
Department of Applied Informatics. Faculty of Mathematics, Physics and Informatics

Comenius University. Mlynská dolina. 842 48 Bratislava. Slovak Republic
certicky@fmph.uniba.sk

RECEIVED: 11-12-2012  ACCEPTED: 02-03-2013

Abstract: By action model, we understand any logic-based representation of effects and
executability preconditions of individual actions within a certain domain. In the context
of artificial intelligence, such models are necessary for planning and goal-oriented auto-
mated behaviour. Currently, action models are commonly hand-written by domain ex-
perts in advance. However, since this process is often difficult, time-consuming, and
error-prone, it makes sense to let agents learn the effects and conditions of actions from
their own observations. Even though the research in the area of action learning, as a
certain kind of inductive reasoning, is relatively young, there already exist several dis-
tinctive action learning methods. We will try to identify the collection of the most im-
portant properties of these methods, or challenges that they are trying to overcome, and
briefly outline their impact on practical applications.

Keywords: Action model – artificial intelligence – learning – planning.

1. Introduction

 Reasoning about actions is an important aspect of commonsense rea-
soning, which served as a motivation behind some of the recent non-
monotonic logic formalisms and planning languages (Eiter et al. 2000; Gi-
unchiglia – Lifschitz 1998; McDermott et al. 1998; Pednault 1989; Gins-
berg – Smith 1988). Intelligent and flexible goal-oriented automated be-
haviour and planning tasks require knowledge about domain dynamics, de-

 A C T I O N M O D E L S A N D T H E I R I N D U C T I O N 207

scribing how certain actions affect the world. Such knowledge is in artificial
systems referred to as action model.
 In general, the action model can be seen as a double ⟨D, P⟩, where D is
a representation of domain dynamics (effects and executability preconditions of
every possible action) in any logic-based language, and P is a probability
function defined over the elements of D. This probability expresses either
the likelihood of certain action’s effect, or our confidence in this piece of
knowledge.
 Typically, these action models are hand-written by domain experts. In
many situations however, we would like to be able to induce such models
automatically, since hand-writing them is often a difficult, time-consuming
and error-prone task (especially in complex environments). In addition to
that, every time we are confronted with new information, we need to do
(often problematic) knowledge revisions and modifications.
 An agent (artificial or living) capable of learning action models auto-
matically possesses some degree of environmental independence (he can be
deployed into various environments, where he would learn local causal de-
pendencies and consequences of his actions).
 The inductive process of automatic construction and subsequent im-
provement of action models, based on sensory observations, is called action
learning. In recent years, several action learning methods have been intro-
duced. They take various approaches and employ a wide variety of tools
from many areas of artificial intelligence and computer science (Amir –
Chang 2008; Yang et al. 2007; Balduccini 2007; Certicky 2012; Mourao et
al. 2010; Zettlemoyer et al. 2005). In this paper, we will describe a collec-
tion of interesting properties, or fundamental challenges that any action learn-
ing method might, or might not be able to overcome.

2. Usability in Partially Observable Domains

 Every domain is either fully, or partially observable. As an example of a
fully observable domain let us consider a game of chess. Both players (agents)
have a full visibility of all the features of their domain – in this case the
configuration of the pieces on the board. Such configuration is typically
called a world state. On the other hand, by partially observable domain we
understand any environment, in which agents have only limited observa-
tional capabilities – in other words, they can see only a small part of the

208 M I C H A L Č E R T I C K Ý

state of their environment (world states are partially observable). Real world
is an excellent example of a partially observable domain. Agents of the real
world (for example humans) can only observe a small part of their sur-
roundings: they can only hear sounds from their closest vicinity (basically
several meters, depending on how loud the sounds are), see only objects
that are in their direct line of sight (given the light conditions are good
enough), etc.
 An action learning method is usable in partially observable domains only
if it is capable of producing useful action models, even if the world states
are not fully observable.
 Learning the action models in partially observable domains is in princi-
ple more difficult task, since we do not observe some of the changes hap-
pening in the world after the execution of actions. To induce a causal link
between the action and its effect, we need to observe this effect. However,
in partially observable domains, this observation may be available later or
not at all, making the learning slower and resulting models less precise.

3. Learning Probabilistic Action Models

 There are two ways of modelling a domain dynamics (creating action
models), depending on whether we want the randomness to be present or
not. An action model is deterministic, if actions it describes have all a
unique set of always successful effects. In other words, the probabilistic
function P assigns the uniform probability of 1 to all the elements of D.
 Conversely, in case of a probabilistic (or stochastic) action models, effects
have a set of possible outcomes with non-uniform probabilistic distrubution.
Let us clarify this concept using a simple toy domain called Blocks World,
discussed extensively (among others) in (Nilsson 1982; Russell – Norvig
2003; Gupta – Nau 1992; Slaney – Thibaux 2001).
 The Blocks World domain consists of a finite number of blocks stacked
into towers on a table large enough to hold them all. The positioning of
towers on the table is irrelevant. Agents can manipulate this domain by
moving blocks from one position to another. Action model of the simplest
Blocks World versions is composed of only one action move(B, P1, P2).
This action merely moves a block B from position P1 to position P2 (P1
and P2 being either another block, or the table).

 A C T I O N M O D E L S A N D T H E I R I N D U C T I O N 209

 A A F

 B D F E D

 C E G B C G

(a) (b)

Figure 1: Two different world states in Blocks World domain.

 Deterministic representation of such action would look something like
this:

 Name & parameters :
 move(B, P1, P2)

 Preconditions :
 {on(B, P1), free(P1), free(P2)}

 Effects:
 {¬on(B, P1), on(B, P2)}

Our action is defined by its name, preconditions, and a unique set of effects
{¬on(B, P1), on(B, P2)}, all of which are applied each time the action is exe-
cuted. This basically means, that every time we perform an action
move(B, P1, P2), the block B will cease to be at position P1 and will appear
at P2 instead. In a simple domain like Blocks World, this seems to be suffi-
cient.
 In the real world however, the situation is not so simple, and our at-
tempt to move the block can have different outcomes:

 Name & parameters :
 move(B, P1, P2)

 Preconditions :
 {on(B, P1), free(P1), free(P2)}

210 M I C H A L Č E R T I C K Ý

 Effects:
 0 . 8 : ¬on(B, P1), on(B, P2)
 0 . 1 : ¬on(B, P1), on(B, table)
 0.1 : nochange

This representation of our action defines the following probabilistic distri-
bution over three possible outcomes:

 1. 80% chance that block B indeed appears at P2 instead of P1,
 2. 10% chance that block B falls down on the table,
 3. 10% chance that we fail to pick it up and nothing happens.

We can easily see that probabilistic action models are better suited for de-
scribing real-world domains, or complex simulations of non-deterministic
nature, where agent’s sensors and effectors may be imprecise and actions
can sometimes lead to unpredicted outcomes.
 The main difficulty in learning probabilistic action models lies in their
size. Space complexity of such models tends to be considerably higher, and
learning algorithms need to be able to distinguish relevant outcomes and
ignore the others.

4. Dealing with Action Failures and Sensoric Noise

 In some cases we prefer learning deterministic action models in stochas-
tic domains. (Recall, that action models are used for planning. Planning
with probabilistic models is computationally harder, which makes it unus-
able in some situations.) Therefore we need an alternative way of dealing
with nondeterministic nature of our domain. There are two sources of
problems that can arise in this setting:

4.1. Action Failures

 As we noted in section 3, actions in non-deterministic domains can
have more than one outcome. In a typical situation though, each action has
one outcome with significantly higher probability than the others. In case
of action move(B, P1, P2) from Blocks World, this expected outcome was ac-
tually moving a block B from position P1 to P2. Then if after the execution
the block was truly at position P2, we considered the action successful. If

 A C T I O N M O D E L S A N D T H E I R I N D U C T I O N 211

the action had any other outcome, it was considered unsuccessful – we say
that the action failed.
 From the agent’s point of view, action failures pose a serious problem,
since it is difficult for him to decide whether given action really failed (due
to some external influence), or the action was successfull, but his expecta-
tions about the effects were wrong (if his expectations were wrong, he
needs to modify his action model accordingly).

4.2. Sensoric Noise

 Another source of complications is so-called sensoric noise. In real-world
domains, we are typically dealing with sensors that have limited precision.
This means, that the observations we get do not necessarily correspond to
the actual state of the world.
 Even when agent’s action is successful, and the expected changes occur,
he may observe the opposite. From the agent’s point of view, this problem
is similar to the problem with action failures. In this case he needs to solve
the dilemma, whether his expectations were incorrect, or the observation
was imprecise.
 In addition to that, sensoric noise can cause one more complication of a
technical nature: If the precision of the observations is not guaranteed,
even a single observation can be internally inconsistent. Action learning
methods based on the computational logic sometimes fail to deal with this
fact.

5. Learning both Preconditions and Effects

 Since the introduction of the first planning language STRIPS (Fikes –
Nilsson 1971) in early 70’s, a common assumption is, that actions have
some sort of preconditions and effects.
 Preconditions1

1 Preconditions are sometimes called executability conditions or applicability conditions –
especially when we formalise actions as operators over the set of world states.

 define what must be established in a given world state be-
fore an action can even be executed. Looking back at Blocks World, the
preconditions of action move(B, P1, P2) require both positions P1 and P2 to
be free (meaning that no other block is currently on top of them). Other-
wise, this action is considered inexecutable.

212 M I C H A L Č E R T I C K Ý

 Effects2

6. Learning Conditional Effects

 Research in the field of planning languages has shown that expressive
power of early (STRIPS-like) representations is susceptible to be improved
by addition of so-called conditional effects. This results from the fact, that
actions, as we usually talk about them in natural language, have different
effects in different world states.
 Consider a simple action of person P drinking a glass of beverage B –
drink(P, B). Effects of such action would be (in natural language) expressed
by following sentences:

 simply specify what is established after a given action is exe-
cuted, or in other words, how the action modifies the world state.
 Some action learning approaches either produce effects and ignore pre-
conditions, or the other way around. They are therefore incapable of pro-
ducing complete action model from the scratch, and thus are usable only in
situations where some partial hand-written action model is provided. In
general, it is good to avoid the necessity to have any prior action model.

• P will cease to be thirsty.
• If B was poisonous, P will be sick.

We can see, that second effect (P becoming sick) only applies under certain
conditions (only if B was poisonous). We call effects like these conditional ef-
fects.
 Early planning languages did not support conditional effects. Of course,
there was a way to express aforementioned example, but we needed split it
into two separate actions with different sets of preconditions:

 drink_if_poisonous(P, B) and drink_if_not_poisonous(P, B).

 Having a support for conditional effects thus allows us to express do-
main dynamics by lower number of actions, making our representation less
space consuming and more elegant. Several state-of-the art planning lan-
guages provide the apparatus for defining conditional effects – see the fol-
lowing example:

2 Effects are sometimes called postconditions – primarily in the early publications in
STRIPS-related context.

 A C T I O N M O D E L S A N D T H E I R I N D U C T I O N 213

 STRIPS extensions like Action Description Language (ADL) (Pednault
1989) or Planning Domain Definition Language (PDDL) (McDermott et al.
1998) express the effects of drink(P,B) action in the following manner:

 : e f f e c t (n o t (t h i r s t y ? p))
 : e f f e c t (w h e n (p o i s o n o u s ? b) (s i c k ? p))

Definition of same two effects in fluent-based languages like K (Eiter et al.
2000) on the other hand, employs the notion of so-called dynamic laws:

 c a u s e d — t h i r s t y (P) a f t e r d r i n k (P , B) .
 c a u s e d s i c k (P) a f t e r p o i s o n o u s (B) , d r i n k (P , B) .

 Aside from creating more elegant and brief action models, the ability to
learn conditional effects provides one important advantage: It allows for
more convenient input form from our sensors. If we were unable to work
with conditional effects, our sensors would have to be able to observe and
interpret a large number of actions like drink_if_poisonous(P, B) or
drink_if_not_poisonous(P, B). However, if our action model supports condi-
tional effects, the sensors only need to work with a smaller number of more
general actions like drink(P, B).

7. Online Algorithms and Tractability

 As mentioned in the introduction, the action learning methods employ
various tools from several areas of computer science and artificial intelli-
gence. Since our focus lies on the artificial agents, and their ability to learn
action models, either these tools themselves, or their actual objectification
is algorithmic in nature. It is therefore needed to take the computational
complexity and the actual running speed of used algorithms into account.
We say that algorithms that run fast enough for their output to be useful
are called tractable (Hopcroft 2007).
 Additionally, the algorithms whose input is served one piece at a time,
and upon receiving it, they have to take an irreversible action without the
knowledge of future inputs, are called online (Borodin – El-Yaniv 1998).
 For the purposes of action learning we prefer using online algorithms,
which run once after every observation. Agent’s newest observation is
served as the input for the algorithm, while there is no way of knowing

214 M I C H A L Č E R T I C K Ý

anything about future or past observations. Algorithm simply uses this ob-
servation to modify agent’s knowledge (action model). Since the input of
such algorithm is relatively small, tractability is usually not an issue here.
 If we, on the other hand, decided to use offline algorithms for action
learning, we would have to provide the whole history of observations on
the input. Algorithms operating over such large data sets are prone to be
intractable.
 Since online algorithms are designed to run repeatedly during the “life”
of an agent, he has some (increasingly accurate) knowledge at his disposal
at all times. Offline action learning algorithms are, on the other hand, de-
signed to run only once, after the agent’s life, which makes them unusable
in many applications.
 There is however a downside to using online algorithms for action
learning. Recall, that with online algorithms, the complete history of ob-
servations is not at our disposal, and we make an irreversible change to our
action model after each observation. This change can cause our model to
become inconsistent with some of the previous (or future) observations.
This also means that the precision of induced action models depends on
the ordering of the observations. Online algorithms are therefore poten-
tially less precise than their offline counterparts. Lower precision is how-
ever often traded for tractability.

8. Conclusion

 Based on relevant literature (Amir – Chang 2008; Yang et al. 2007;
Balduccini 2007; Certicky 2012; Mourao et al. 2010; Zettlemoyer et al.
2005), we have identified a common collection of challenges, that the cur-
rent action learning methods try to overcome. Each of these methods is
able to deal with a different subset of these subproblems, which makes it
applicable in different situations and domains. The relation between these
challenges and the real-world applications of action learning methods has
been clarified.

References

AMIR, E. – CHANG, A. (2008): Learning partially observable deterministic action mod-
els. Journal of Artificial Intelligence Research 33, No. 1, 349-402.

 A C T I O N M O D E L S A N D T H E I R I N D U C T I O N 215

BALDUCCINI, M. (2007): Learning action descriptions with a-prolog: Action language c.
In: AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning. 13-18.

BORODIN, A. – EL-YANIV, R. (1998): Online Computation and Competitive Analysis. New
York: Cambridge University Press.

CERTICKY, M. (2012): Action learning with reactive answer set programming: Prelimi-
nary report. In: ICAS 2012, The Eighth International Conference on Autonomic and
Autonomous Systems. 107-111.

EITER, T. – FABER, W. – LEONE, N. – PFEIFER, G. – POLLERES, A. (2000): Planning
under incomplete knowledge. In: Proceedings of the First International Conference on
Computational Logic, CL ‘00. London: Springer-Verlag, 807-821.

FIKES, R. E. – NILSSON, N. J. (1971): Strips: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence 2, Nos. 3-4, 189-208.

GINSBERG, M. L. – SMITH, D. E. (1988): Reasoning about action i: A possible worlds
approach. Artificial Intelligence 35, No. 2, 165-195.

GIUNCHIGLIA, E. – LIFSCHITZ, V. (1998): An action language based on causal explana-
tion: preliminary report. In: Proceedings of the fifteenth national/tenth conference on Ar-
tificial intelligence/Innovative applications of artificial intelligence, AAAI ‘98/IAAI ‘98.
Menlo Park, CA, USA. American Association for Artificial Intelligence, 623-630.

GUPTA, N. – NAU, D. S. (1992): On the complexity of blocks-world planning. Artificial
Intelligence 56, Nos. 2-3, 223-254.

HOPCROFT, J. E. (2007): Introduction to Automata Theory, Languages, and Computation.
3rd edition. Pearson Addison Wesley.

MCDERMOTT, D. – GHALLAB, M. – HOWE, A. – KNOBLOCK, C. – RAM, A. – VELOSO,
M. – WELD, D. – WILKINS, D. (1998): Pddl – the planning domain definition lan-
guage. Annals of Physics 54 (CVC TR-98-003), 26.

MOURAO, K. – PETRICK, R. P. A. – STEEDMAN, M. (2010): Learning action effects in
partially observable domains. In: Proceedings of the 2010 conference on ECAI 2010:
19th European Conference on Artificial Intelligence, Amsterdam: IOS Press, 973-974.

NILSSON, N. J. (1982): Principles of Artificial Intelligence.
PEDNAULT, E. P. D. (1989): Adl: exploring the middle ground between strips and the

situation calculus. In: Proceedings of the first international conference on Principles of
knowledge representation and reasoning. San Francisco: Morgan Kaufmann Publishers
Inc., 324-332.

RUSSELL, S. J. – NORVIG, P. (2003): Artificial Intelligence: A Modern Approach. 2nd edi-
tion. Pearson Education.

SLANEY, J. – THIBAUX, S. (2001): Blocks world revisited. Artificial Intelligence 125, Nos.
1-2, 119-153.

YANG, Q. – WU, K. – JIANG, Y. (2007): Learning action models from plan examples us-
ing weighted max-sat. Artificial Intelligence 171, Nos. 2-3, 107-143.

ZETTLEMOYER, L. S. – PASULA, H. M. – KAELBLIN, L. P. (2005): Learning planning
rules in noisy stochastic worlds. In: IN AAAI. AAAI Press, 911-918.

