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Abstract: By action model, we understand any logic-based representation of effects and 
executability preconditions of individual actions within a certain domain. In the context 
of artificial intelligence, such models are necessary for planning and goal-oriented auto-
mated behaviour. Currently, action models are commonly hand-written by domain ex-
perts in advance. However, since this process is often difficult, time-consuming, and 
error-prone, it makes sense to let agents learn the effects and conditions of actions from 
their own observations. Even though the research in the area of action learning, as a 
certain kind of inductive reasoning, is relatively young, there already exist several dis-
tinctive action learning methods. We will try to identify the collection of the most im-
portant properties of these methods, or challenges that they are trying to overcome, and 
briefly outline their impact on practical applications. 
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1. Introduction 

 Reasoning about actions is an important aspect of commonsense rea-
soning, which served as a motivation behind some of the recent non-
monotonic logic formalisms and planning languages (Eiter et al. 2000; Gi-
unchiglia – Lifschitz 1998; McDermott et al. 1998; Pednault 1989; Gins-
berg – Smith 1988). Intelligent and flexible goal-oriented automated be-
haviour and planning tasks require knowledge about domain dynamics, de-
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scribing how certain actions affect the world. Such knowledge is in artificial 
systems referred to as action model. 
 In general, the action model can be seen as a double ⟨D, P⟩, where D is 
a representation of domain dynamics (effects and executability preconditions of 
every possible action) in any logic-based language, and P is a probability 
function defined over the elements of D. This probability expresses either 
the likelihood of certain action’s effect, or our confidence in this piece of 
knowledge. 
 Typically, these action models are hand-written by domain experts. In 
many situations however, we would like to be able to induce such models 
automatically, since hand-writing them is often a difficult, time-consuming 
and error-prone task (especially in complex environments). In addition to 
that, every time we are confronted with new information, we need to do 
(often problematic) knowledge revisions and modifications. 
 An agent (artificial or living) capable of learning action models auto-
matically possesses some degree of environmental independence (he can be 
deployed into various environments, where he would learn local causal de-
pendencies and consequences of his actions). 
 The inductive process of automatic construction and subsequent im-
provement of action models, based on sensory observations, is called action 
learning. In recent years, several action learning methods have been intro-
duced. They take various approaches and employ a wide variety of tools 
from many areas of artificial intelligence and computer science (Amir – 
Chang 2008; Yang et al. 2007; Balduccini 2007; Certicky 2012; Mourao et 
al. 2010; Zettlemoyer et al. 2005). In this paper, we will describe a collec-
tion of interesting properties, or fundamental challenges that any action learn-
ing method might, or might not be able to overcome. 

2. Usability in Partially Observable Domains 

 Every domain is either fully, or partially observable. As an example of a 
fully observable domain let us consider a game of chess. Both players (agents) 
have a full visibility of all the features of their domain – in this case the 
configuration of the pieces on the board. Such configuration is typically 
called a world state. On the other hand, by partially observable domain we 
understand any environment, in which agents have only limited observa-
tional capabilities – in other words, they can see only a small part of the 
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state of their environment (world states are partially observable). Real world 
is an excellent example of a partially observable domain. Agents of the real 
world (for example humans) can only observe a small part of their sur-
roundings: they can only hear sounds from their closest vicinity (basically 
several meters, depending on how loud the sounds are), see only objects 
that are in their direct line of sight (given the light conditions are good 
enough), etc. 
 An action learning method is usable in partially observable domains only 
if it is capable of producing useful action models, even if the world states 
are not fully observable. 
 Learning the action models in partially observable domains is in princi-
ple more difficult task, since we do not observe some of the changes hap-
pening in the world after the execution of actions. To induce a causal link 
between the action and its effect, we need to observe this effect. However, 
in partially observable domains, this observation may be available later or 
not at all, making the learning slower and resulting models less precise. 

3. Learning Probabilistic Action Models 

 There are two ways of modelling a domain dynamics (creating action 
models), depending on whether we want the randomness to be present or 
not. An action model is deterministic, if actions it describes have all a 
unique set of always successful effects. In other words, the probabilistic 
function P assigns the uniform probability of 1 to all the elements of D. 
 Conversely, in case of a probabilistic (or stochastic) action models, effects 
have a set of possible outcomes with non-uniform probabilistic distrubution. 
Let us clarify this concept using a simple toy domain called Blocks World, 
discussed extensively (among others) in (Nilsson 1982; Russell – Norvig 
2003; Gupta – Nau 1992; Slaney – Thibaux 2001). 
 The Blocks World domain consists of a finite number of blocks stacked 
into towers on a table large enough to hold them all. The positioning of 
towers on the table is irrelevant. Agents can manipulate this domain by 
moving blocks from one position to another. Action model of the simplest 
Blocks World versions is composed of only one action move(B, P1, P2). 
This action merely moves a block B from position P1 to position P2 (P1 
and P2 being either another block, or the table). 
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Figure 1: Two different world states in Blocks World domain. 

 Deterministic representation of such action would look something like 
this: 

  Name & parameters : 
    move(B, P1, P2) 

  Preconditions : 
    {on(B, P1), free(P1), free(P2)} 

  Effects: 
    {¬on(B, P1), on(B, P2)} 

Our action is defined by its name, preconditions, and a unique set of effects 
{¬on(B, P1), on(B, P2)}, all of which are applied each time the action is exe-
cuted. This basically means, that every time we perform an action 
move(B, P1, P2), the block B will cease to be at position P1 and will appear 
at P2 instead. In a simple domain like Blocks World, this seems to be suffi-
cient. 
 In the real world however, the situation is not so simple, and our at-
tempt to move the block can have different outcomes: 

  Name & parameters : 
    move(B, P1, P2) 

  Preconditions : 
    {on(B, P1), free(P1), free(P2)} 
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  Effects: 
     0 . 8 :  ¬on(B, P1), on(B, P2) 
     0 . 1 :  ¬on(B, P1), on(B, table) 
     0.1 : nochange 

This representation of our action defines the following probabilistic distri-
bution over three possible outcomes: 

 1. 80% chance that block B indeed appears at P2 instead of P1, 
 2. 10% chance that block B falls down on the table, 
 3. 10% chance that we fail to pick it up and nothing happens. 

We can easily see that probabilistic action models are better suited for de-
scribing real-world domains, or complex simulations of non-deterministic 
nature, where agent’s sensors and effectors may be imprecise and actions 
can sometimes lead to unpredicted outcomes. 
 The main difficulty in learning probabilistic action models lies in their 
size. Space complexity of such models tends to be considerably higher, and 
learning algorithms need to be able to distinguish relevant outcomes and 
ignore the others. 

4. Dealing with Action Failures and Sensoric Noise 

 In some cases we prefer learning deterministic action models in stochas-
tic domains. (Recall, that action models are used for planning. Planning 
with probabilistic models is computationally harder, which makes it unus-
able in some situations.) Therefore we need an alternative way of dealing 
with nondeterministic nature of our domain. There are two sources of 
problems that can arise in this setting: 

4.1. Action Failures 

 As we noted in section 3, actions in non-deterministic domains can 
have more than one outcome. In a typical situation though, each action has 
one outcome with significantly higher probability than the others. In case 
of action move(B, P1, P2) from Blocks World, this expected outcome was ac-
tually moving a block B from position P1 to P2. Then if after the execution 
the block was truly at position P2, we considered the action successful. If 
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the action had any other outcome, it was considered unsuccessful – we say 
that the action failed. 
 From the agent’s point of view, action failures pose a serious problem, 
since it is difficult for him to decide whether given action really failed (due 
to some external influence), or the action was successfull, but his expecta-
tions about the effects were wrong (if his expectations were wrong, he 
needs to modify his action model accordingly). 

4.2. Sensoric Noise 

 Another source of complications is so-called sensoric noise. In real-world 
domains, we are typically dealing with sensors that have limited precision. 
This means, that the observations we get do not necessarily correspond to 
the actual state of the world. 
 Even when agent’s action is successful, and the expected changes occur, 
he may observe the opposite. From the agent’s point of view, this problem 
is similar to the problem with action failures. In this case he needs to solve 
the dilemma, whether his expectations were incorrect, or the observation 
was imprecise. 
 In addition to that, sensoric noise can cause one more complication of a 
technical nature: If the precision of the observations is not guaranteed, 
even a single observation can be internally inconsistent. Action learning 
methods based on the computational logic sometimes fail to deal with this 
fact. 

5. Learning both Preconditions and Effects 

 Since the introduction of the first planning language STRIPS (Fikes – 
Nilsson 1971) in early 70’s, a common assumption is, that actions have 
some sort of preconditions and effects. 
 Preconditions1

                                                      
1  Preconditions are sometimes called executability conditions or applicability conditions – 
especially when we formalise actions as operators over the set of world states. 

 define what must be established in a given world state be-
fore an action can even be executed. Looking back at Blocks World, the 
preconditions of action move(B, P1, P2) require both positions P1 and P2 to 
be free (meaning that no other block is currently on top of them). Other-
wise, this action is considered inexecutable. 
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 Effects2

6. Learning Conditional Effects 

 Research in the field of planning languages has shown that expressive 
power of early (STRIPS-like) representations is susceptible to be improved 
by addition of so-called conditional effects. This results from the fact, that 
actions, as we usually talk about them in natural language, have different 
effects in different world states. 
 Consider a simple action of person P drinking a glass of beverage B – 
drink(P, B). Effects of such action would be (in natural language) expressed 
by following sentences: 

 simply specify what is established after a given action is exe-
cuted, or in other words, how the action modifies the world state. 
 Some action learning approaches either produce effects and ignore pre-
conditions, or the other way around. They are therefore incapable of pro-
ducing complete action model from the scratch, and thus are usable only in 
situations where some partial hand-written action model is provided. In 
general, it is good to avoid the necessity to have any prior action model. 

• P will cease to be thirsty. 
• If B was poisonous, P will be sick. 

We can see, that second effect (P becoming sick) only applies under certain 
conditions (only if B was poisonous). We call effects like these conditional ef-
fects. 
 Early planning languages did not support conditional effects. Of course, 
there was a way to express aforementioned example, but we needed split it 
into two separate actions with different sets of preconditions: 

 drink_if_poisonous(P, B) and drink_if_not_poisonous(P, B). 

 Having a support for conditional effects thus allows us to express do-
main dynamics by lower number of actions, making our representation less 
space consuming and more elegant. Several state-of-the art planning lan-
guages provide the apparatus for defining conditional effects – see the fol-
lowing example: 
                                                      
2  Effects are sometimes called postconditions – primarily in the early publications in 
STRIPS-related context. 
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 STRIPS extensions like Action Description Language (ADL) (Pednault 
1989) or Planning Domain Definition Language (PDDL) (McDermott et al. 
1998) express the effects of drink(P,B) action in the following manner: 

 : e f f e c t   ( n o t  ( t h i r s t y  ? p ) )   
 : e f f e c t   ( w h e n  ( p o i s o n o u s  ? b )  ( s i c k  ? p ) )  

Definition of same two effects in fluent-based languages like K (Eiter et al. 
2000) on the other hand, employs the notion of so-called dynamic laws: 

 c a u s e d  —  t h i r s t y ( P )  a f t e r  d r i n k ( P , B ) .  
 c a u s e d  s i c k ( P )  a f t e r  p o i s o n o u s  ( B ) ,  d r i n k ( P , B ) .  

 Aside from creating more elegant and brief action models, the ability to 
learn conditional effects provides one important advantage: It allows for 
more convenient input form from our sensors. If we were unable to work 
with conditional effects, our sensors would have to be able to observe and 
interpret a large number of actions like drink_if_poisonous(P, B) or 
drink_if_not_poisonous(P, B). However, if our action model supports condi-
tional effects, the sensors only need to work with a smaller number of more 
general actions like drink(P, B). 

7. Online Algorithms and Tractability 

 As mentioned in the introduction, the action learning methods employ 
various tools from several areas of computer science and artificial intelli-
gence. Since our focus lies on the artificial agents, and their ability to learn 
action models, either these tools themselves, or their actual objectification 
is algorithmic in nature. It is therefore needed to take the computational 
complexity and the actual running speed of used algorithms into account. 
We say that algorithms that run fast enough for their output to be useful 
are called tractable (Hopcroft 2007). 
 Additionally, the algorithms whose input is served one piece at a time, 
and upon receiving it, they have to take an irreversible action without the 
knowledge of future inputs, are called online (Borodin – El-Yaniv 1998). 
 For the purposes of action learning we prefer using online algorithms, 
which run once after every observation. Agent’s newest observation is 
served as the input for the algorithm, while there is no way of knowing 
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anything about future or past observations. Algorithm simply uses this ob-
servation to modify agent’s knowledge (action model). Since the input of 
such algorithm is relatively small, tractability is usually not an issue here. 
 If we, on the other hand, decided to use offline algorithms for action 
learning, we would have to provide the whole history of observations on 
the input. Algorithms operating over such large data sets are prone to be 
intractable. 
 Since online algorithms are designed to run repeatedly during the “life” 
of an agent, he has some (increasingly accurate) knowledge at his disposal 
at all times. Offline action learning algorithms are, on the other hand, de-
signed to run only once, after the agent’s life, which makes them unusable 
in many applications. 
 There is however a downside to using online algorithms for action 
learning. Recall, that with online algorithms, the complete history of ob-
servations is not at our disposal, and we make an irreversible change to our 
action model after each observation. This change can cause our model to 
become inconsistent with some of the previous (or future) observations. 
This also means that the precision of induced action models depends on 
the ordering of the observations. Online algorithms are therefore poten-
tially less precise than their offline counterparts. Lower precision is how-
ever often traded for tractability. 

8. Conclusion 

 Based on relevant literature (Amir – Chang 2008; Yang et al. 2007; 
Balduccini 2007; Certicky 2012; Mourao et al. 2010; Zettlemoyer et al. 
2005), we have identified a common collection of challenges, that the cur-
rent action learning methods try to overcome. Each of these methods is 
able to deal with a different subset of these subproblems, which makes it 
applicable in different situations and domains. The relation between these 
challenges and the real-world applications of action learning methods has 
been clarified. 
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