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An Outline of a Substructural Model of BTA Belief1

 The Gettier examples (see Gettier 1963) suggest that in order to know 
a proposition, the belief that the proposition holds cannot be based on false 
assumptions. For example, assume that my colleague Dr. A has bought a 
new car. I believe that one of my colleagues has bought a new car (C), but 
this belief is based on the false assumption that Dr. B, also a colleague of 
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Abstract: The paper outlines an epistemic logic based on the proof theory of substruc-
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1. Introduction 

                                                      
1  This paper was written at the Department of Logic and Methodology of Sciences, 
Comenius University. The work was carried out as a part of the project Semantic models, 
their explanatory power and applications and supported by the VEGA grant no. 
1/0046/11. 
 Versions of the paper have been read at the Prague Workshop on Non-Classical Episte-
mic Logics (Prague, Czech Republic, June 2012) and the symposium Systems of Deduction 
(Dolná Krupá, Slovakia, September 2012). I am grateful to the respective audiences for 
their constructive comments and helpful remarks. Last but not least, I wish to express my 
gratitude to an anonymous referee for pointing out several ways to improve the paper. 
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mine, is the owner (B). My belief that C is a true belief. It is also justified: 
by valid inference from B and B → C. However, it is quite plausible to as-
sume that I do not know that C. The obvious reason is that my justification 
of the belief that C is based upon the false assumption B. 
 The notion of belief based on true assumptions (BTA belief) is interesting 
even in itself, considered independently of the analysis of knowledge (and 
even independently of the Gettier examples). BTA belief is safe: if a justifi-
cation is requested, true assumptions can be provided. Moreover, if “based 
on” is construed as a truth-preserving relation, then BTA belief yields true 
belief.2

 This paper outlines a simple formal model of BTA belief. The basic 
idea is to use explicit bodies of assumptions (or information) and the conse-
quences of portions of this body. Hence, “based on” is construed as  
a truth-preserving relation. However, it is not assumed that the body of as-
sumptions is a set and that the consequence relation is classical: the model 
utilises the proof theory of substructural logics.

    

3

                                                      
2  On the other hand, if “based on” is construed, for example, in probabilistic terms, 
then this does not hold: a set of true propositions can make a proposition p “highly 
probable” while p is, in fact, false. 
3  An exposition of substructural logics can be found in Restall (2000).  

   
 Section 2 briefly reviews the possibilities of modelling BTA belief 
within standard epistemic logics. Section 3 outlines the substructural ap-
proach: epistemic states are defined and the semantics of a propositional 
epistemic language is given. Section 4 provides examples of valid formulas 
and discusses some prominent examples of non-valid formulas. Section 5 
concludes the paper and outlines directions of future work. 

2. Epistemic logics and BTA belief 

 Standard epistemic logics (see Fagin et al. 1995, ch. 1-3, for example) 
model belief as a necessity-like operator. Semantically, the logics corre-
spond to various classes of models M = (W, R, V), where W is a non-
empty set, R is a binary relation on W and V is a valuation. The truth con-
ditions of Boolean formulas in points x ∈ W are the usual Boolean condi-
tions. A formula A is believed in x iff A holds in every y such that Rxy.  
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 One may provide a BTA-like interpretation of this semantics. Assume 
that every x is given a body of formulas At(x), seen as the assumptions 
adopted in x. The relation R may be construed as follows: Rxy iff every 
formula in At(x) holds at y. If R is assumed to be reflexive, then every as-
sumption adopted in x is true in x. 
 However, there are two problems. First, the bodies of assumptions At(x) 
are not explicitly given within standard epistemic models. In general, stan-
dard epistemic logics do not articulate reasons for beliefs. Second, the resul-
tant belief operator suffers from the notorious omniscience properties.4

The language L0 is the language of classical propositional logic. The 
language L1 is L0 with a unary operator Bel. p, q, etc. (A, B, etc.) will be 
used as metavariables ranging over the set of propositional variables P 
(the set of formulas Fm). Every formula of L0 is a structure and the only 

 For 
example, belief is closed under every propositionally valid inference rule. As 
a special case, every propositional tautology is believed. In general, belief 
within a standard epistemic logic L is closed under every L-valid inference 
rule. 
 Both these problems are addressed by justification logics (see Artemov 
1994, 2001, 2008 and 2011, for example). These extend the Boolean lan-
guage by a set of justification terms. This allows to express claims such as “t 
justifies A”, where t is a justification term and A is a formula. Informally, “t 
justifies A” is true in a world x only if t is an admissible evidence for A at x 
(or: relatively to the context of x). It has been proposed recently to inter-
pret justification terms t as sets of formulas *(t, x), relatively to worlds x 
(Artemov 2012). In line with this interpretation, t may be seen as corre-
sponding to a true assumption at x iff every formula in *(t, x) is true in x.   

3. Epistemic states and substructural logics 

 This section outlines the basics of the substructural approach. Epis-
temic states are defined and an interpretation of the formal definition is 
briefly discussed. Familiarity with substructural logics is helpful, but the 
necessary background is provided. 

Definition 3.1 

                                                      
4  A readable discussion of the omniscience properties may be found in Fagin et al. 
(1995, ch. 9). 
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substructure of itself. If X and Y are structures, then (X ; Y) is a struc-
ture with substructures X and Y (We shall refrain from using the out-
ermost pair of parentheses). The set of structures will be referred to as 
Struct. A consecution is an expression of the form X├ A, where X is a 
structure and A is a formula of L0. A structural rule is a rule of the form 

Y(X)├ A 
————— 
Y(X*)├ A 

It is assumed that structural rules are closed under substitution of for-
mulas. (Structural rules shall be referred to by X ⇐ X*.) If Γ is a set of 
structural rules (closed under derivability5

                                                      
5  A rule R0 is derivable from rules R1, …, Rn iff the admissibility of R0 is a consequ-
ence of the assumption that R1, …, Rn are admissible. For example, (M) is derivable 
from (K): if X ; Y may replace X, where Y is arbitrary, then, obviously, X ; X may repla-
ce X as well.   

), then a consecution is Γ-
provable iff it is provable using no other structural rules than those in Γ.  

 The intuitive interpretation of Bel is “it is a BTA belief that”. Struc-
tures are to be seen as bodies of information, where “;” is a punctuation 
mark meaning “taken together with”. Consecutions X├ A are read “the 
structure X entails A”. Structural rules state that certain structures X may 
be replaced (even within other structures Y) by structures X* without af-
fecting the set of entailed formulas. Here are some familiar examples of 
structural rules: 

 (B)  X ; (Y ; Z)  ⇐  (X ; Y); Z (“Associativity”) 
 (Bc) (X ; Y); Z  ⇐ X ; (Y ; Z) (“Converse associativity”) 
 (CI) X ; Y  ⇐  Y ; X (“Weak commutativity”) 
 (M) X ⇐ X ; X (“Mingle”) 
 (WI) X ; X  ⇐  X (“Weak contraction”) 
 (K)  X ⇐ X ; Y (“Weakening”) 

 We shall be working with natural deduction systems for substructural 
logics. These systems are given by the axiom A├ A, a set of structural rules 
and a set of introduction and elimination rules for the connectives. While 
variations in the former yield different substructural logics, the latter will 
be constant: 
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 (→I) If X ; A├  B, then X├ A → B. 
 (→E) If X├ A → B and Y├ A, then X ; Y├ B 
 (∧I) If X├ A and X├ B, then X├ A ∧ B. 
 (∧E) If X├ A ∧ B, then X├ A and X├ B. 
 (∨I ) Both X├ A and X├ B yield X├ A ∨ B. 
 (∨E) If Y(A)├ C, Y(B)├ C and X├ A ∨ B, then Y(X)├ C 
 (Neg) If A├ ¬B and X├ B, then X├ ¬A 

Let us note that the cut rule 

 (Cut) If X├ A and Y(A)├ B, then Y(X)├ B 

is admissible in every natural deduction system built upon these rules. 
 Of course, structural rules affect the set of provable consecutions. For 
example, weakening is essential in the proof of A├ B → A: 

 1. A├ A   (axiom) 
 2. A ; B├ A  (1., K) 
 3. A├ B → A  (2. →I)  

Similarly, (CI) is sufficient for A├ (A → B) → B and (B), (Bc), (WI) are 
sufficient for A → (A → B)├ A → B. The choice of structural rules is usu-
ally influenced by the assumed nature of structures. For example, if struc-
tures are seen as sets, then all the above structural rules (with the possible 
exception of (K)) are plausible.6

A substructural frame is a tuple F = (W, R, C, ≤) where W is a non-
empty set, R is a ternary relation on W, C is a symmetric

 If it is assumed in addition that the conse-
quence relation is monotonic, (K) is plausible as well. However, if struc-
tures are seen as multisets, then (M) and (WI) are no longer plausible. If 
they are seen as lists, then (CI) has to go as well. For more detail see Restall 
(2000).  

Definition 3.2 

7

                                                      
6  The set {A, B} is identical with {B, A} and {A, A, B}. 

 binary rela-

7  Symmetry is assumed since we shall be working with a single negation. In addition, 
we opt to consider a single implication, but without considering only commutative fra-
mes. This is the case since we want our “non-epistemic fragment” of the language to 
consist of the ordinary Boolean formulas. Symmetry is a natural assumption if C is read 
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tion on W and ≤ is a partial order on W. Moreover, the following con-
ditions are assumed: 

 If Rxyz and x’ ≤ x, y’ ≤ y, z ≤ z’, then Rx’y’z’. 
 If Cxy, x’ ≤ x and y’ ≤ y, then Cx’y’. 

A substructural model is a couple M = (F, E), where E is an evaluation 
function from W × (Fm ∪ Struct) to {0, 1} such that: 

 If E(x, p) = 1 and x ≤ y, then E(y, p) = 1 
 E(x, A ∧ B) = 1 iff E(x, A) = E(x, B) = 1 
 E(x, A ∨ B) = 1 iff E(x, A) = 1 or E(x, B) = 1 

E(x, A → B) = 1 iff for all y, z: If Rxyz and E(y, A) = 1, then  
E(z, B) = 1 

 E(y, ¬A) = 1 iff for all y: Cxy implies E(y, A) = 0 
 E(y, X ; Y) = 1 iff there are y,z: Ryzx, E(y, X) = 1 and E(z, Y) = 1 

A consecution X├ A is valid in M iff E(x, X) = 1 implies E(x, A) = 1 
for all x ∈ W. A consecution X├ A is valid in F iff it is valid in every 
M = (F, E). 

 We do not give an exposition of the substructural semantics – inter-
ested reader is referred to Restall (2000) and Mares (2004).  

Lemma 3.3 
Let ND be a substructural natural deduction system with a set Γ of struc-
tural rules. A consecution X├ A is provable in ND iff it is valid in the class 
of frames that satisfy the conditions corresponding to members of Γ. Some of 
the corresponding conditions are: 

 c(B) If R(xy)zw, then Rx(yz)w 
 c(Bc) If Rx(yz)w, then R(xy)zw 
 c(CI) If Rxyz, then Ryxz 
 c(M) If Rxxy, then x ≤ y 
 c(WI) Rxxx 
 c(K) If Rxyz, then x ≤ z  

(R(xy)zw means that there is a u such that Rxyu and Ruzw, while Rx(yz)w 
means that there is a u such that Ryzu and Rxuw.) 

                                                      
as “consistency”, but commutativity is considered to be rather strong. For details, see 
Restall (2000). 
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Proof: See Restall (2000, ch. 11). 

Definition 3.4 
Let Γ be a set of structural rules. A Γ-frame is a frame that satisfies 
every condition corresponding to members of Γ. A Γ-countermodel to 
X├ A is a model M = (F, E), where F is a Γ-frame and there is x ∈ W 
such that E(x, X) = 1 but E(x, A) = 0. 

Definition 3.5 
An epistemic state s is a triple (X, Γ, V), where X is a structure, Γ is a set 
of structural rules and V is a function from P to {0,1}. Truth values of 
L1-formulas at states are defined as follows: 

 T(s, p) = 1 iff V(s, p) = 1  
 T(s, ¬A) = 1 iff T(s, A) = 0 
 T(s, A ∧ B) = 1 iff T(s, A) = 1 and T(s, B) = 1 
 T(s, A ∨ B) = 1 iff T(s, A) = 1 or T(s, B) = 1 
 T(s, A → B) = 1 iff T(s, A) = 0 or T(s, B) = 1 

T(s, Bel A) = 1 iff there is a substructure Y of X such that Y├ A is 
Γ-provable and T(s, B) = 1 for every formula B in Y.  

A formula is Γ-valid iff it is true in every s’ = (X’, Γ, V’). A formula is 
universally valid iff it is Γ-valid for every Γ. 

 An epistemic state is given by a structured body of information (assump-
tions) X and an “environment” specified by the valuation V. Notice that we 
construe epistemic states as syntactic objects. This is an alternative to the 
usual construal of states as “sets of possible worlds”.  
 As noted above, the properties of X are partially specified by the struc-
tural rules in Γ. It is a BTA belief that A iff there is a body of information 
Y within X such that i) A is inferable from Y using no structural rules other 
than those in Γ and ii) Y consists only of true formulas.8

 Let us note that this approach builds upon Konolige’s deductive 
model of belief, see Konolige (1984), and the usual methods of knowl-
edge representation, see Šefránek (2000), Brachman – Levesque (2004). 
However, the present framework is a generalisation of these: substruc-

  

                                                      
8  The truth condition of Bel is the reason why structures (“assumptions”) may conta-
in only L0–formulas. A more generous definition of structures would render the truth 
condition circular. 
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tural logics allow us to work with various types of structures and conse-
quence relations. The idea of using substructural logics in modelling 
epistemic notions is not new, see Bílková et al. (2010) and Sequoiah-
Grayson (2009), for example. 

4. Properties of BTA belief 

 This section discusses some of the properties of BTA belief. We begin 
by pointing out several universally valid formulas and rules. 
 First, BTA belief is factive: 

 (1)  Bel A → A  

The reason is that, no matter what structural rules are assumed, provable 
consecutions X├ A have the following property: If v is a Boolean valuation 
such that every formula B in X is true with respect to v, then A is true with 
respect to v as well. This may be easily demonstrated by induction on the 
complexity of proofs. 
 Second, BTA belief (in every Γ-state) is closed under Γ-consequence: If 
A├ B is Γ-provable, then Bel A → Bel B is Γ-valid.9

is not universally valid. For example, consider an epistemic state s = (X, Γ, 
V), where Γ contains only (CI), X = p ; q and V(p) = V(q) = 1. Obviously, 

 This is a straightfor-
ward consequence of the admissibility of (Cut). 
 Third, BTA belief is closed under “∧ elimination” and “∨ introduc-
tion”: 

 (2)  Bel(A ∧ B) → (Bel A ∧ Bel B) 
 (3)  (Bel A ∨ Bel B) → Bel(A ∨ B)    

This is a trivial consequence of the rules (∧E) and (∨I). Note, however, 
that BTA belief is not necessarily closed under “∧ introduction”, since the 
converse of (2), i.e. 

 (4)  (Bel A ∧ Bel B) → Bel(A ∧ B) 

                                                      
9  Hence, Bel may be read as implicit belief. Epistemic states may be extended by in-
cluding a syntactic filter (such as an awareness set), but we shall not do so in the present 
paper. 
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Bel p and Bel q. However, there is no substructure of X that entails p ∧ q: 
the consecutions p├ p ∧ q, q├ p ∧ q and p ; q├ p ∧ q are all clearly inva-
lid.10

 Moreover, as the failure of closure under “∧ introduction” (4) demon-
strates, (EC) does not hold if n = 2, even if A1 ∧ A2├ B is provable with-

 The converse of (3) is not valid either. To see this, it is sufficient to 
consider a state s such that X = p ∨ q and Γ is empty. It is clear that nei-
ther p ∨ q├ p, nor p ∨ q├ q are provable using the empty set of structural 
rules: there are Γ-countermodels to both consecutions.   
 Closure under modus ponens  

 (5)  Bel(A → B) → (Bel A → Bel B) 

is not universally valid either. Consider an epistemic state s = (X, Γ, V), 
where Γ contains only (CI), X = (p → q) ; (r ; p) and V(p) = V(q) = V(r) 
= 1. Obviously, Bel (p → q) and Bel p. However, there is no substructure 
of X that entails q. We will provide a countermodel to (p → q) ; (r ; q)├ 
q. (The reader may provide countermodels to consecutions with other sub-
structures of X as an exercise.) Let W = {x, y, z}. As usual, let C and ≤ be 
identity on W. Assume that Rxxy and Ryyz. Now let E(x, r) = E(x, p) = 1. 
Hence, E(y, r ; p) = 1. Moreover, let E(y, p) = 0. Consequently, E(y, p → q) 
= 1. Therefore, E(z, (p → q) ; (r ; p)) = 1. But nothing prevents us from 
having E(z, q) = 0.   
 In general, consider the following epistemic closure schema: 

 (EC) If A1 ∧ … ∧ An → B is universally valid, then Bel A1 ∧ … ∧ Bel An 
→ is universally valid. 

It is clear that only quite special cases of (EC) are true. For example, if n = 
1 and A1├ B is provable without any special structural rules. The latter 
condition is essential: many consecutions A├ B, where A → B is a proposi-
tional tautology, are not provable without recourse to specific structural 
rules. In fact, to achieve this was the point of introducing substructural lo-
gics. 

                                                      
10  A countermodel to the first consecution: Let W be a singleton consisting of x, let 
C and ≤ be identity on W and let Rxxx. Obviously, this is a (CI)-frame. Moreover, let 
E(x, p) = 1 and E(x, q) = 0. (There is a similar countermodel to the second consecu-
tion.) A countermodel to the third consecution: Let W be {x, y}, let C and ≤ be iden-
tity on W and let Rxxy. Moreover, let E(x, p) = 1, E(x, q) = 1 and E(y, p) = 0. Obvio-
usly, E(y, p ; q) = 1, but E(y, p ∧ q) = 0. 
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out using any structural rules. In addition, it is plain that propositional tau-
tologies are not universally BTA believed either: for example, q ∨ ¬q is a 
propositional tautology, but it is sufficient to consider a state s where X = 
p. It is plain that p├ q ∨ ¬q is not provable by using every Γ. To sum up, 
BTA belief does not suffer from many of the notorious omniscience prop-
erties. 

5. Conclusion 

 We have outlined a simple formal model of belief that i) is based on 
true assumptions, ii) does not suffer from the usual omniscience properties. 
Moreover, the present framework is rather general: one may concentrate on 
various types of bodies of information (sets, multisets, lists etc.) and conse-
quence relations (monotonic as well as nonmonotonic). 
 However, this paper is only an outline of a broader project. Many paths 
of future research are open. First, this paper does not discuss the problem 
of axiomatisation of the set of universally valid L1-formulas. A related open 
problem is proving correspondence results for various epistemic formulas. 
Second, one may attempt to combine the substructural approach with the 
usual epistemic Kripke semantics and, in addition, to provide multi-agent 
versions. It is also possible to interpret several extended epistemic languages 
(possibly containing dynamic or group-epistemic operators) in these com-
bined models. Finally, it is much desired to elaborate the present frame-
work so that it could handle the familiar introspection properties (and for-
mulas with iterated epistemic operators in general). However, these investi-
gations are left for another occasion. 
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