
Organon F 19 (2012), 20-45 © 2012 The Author. Journal compilation © 2012 Institute of Philosophy SAS

Towards an Extensional Calculus
of Hyperintensions

Marie Duží
VSB-Technical University, Ostrava

Abstract: In this paper I describe an extensional logic of hyperinten-
sions, viz. Tichý’s Transparent Intensional Logic (TIL). TIL preserves
transparency and compositionality in all kinds of context, and validates
quantifying into all contexts, including intensional and hyperintension-
al ones. The received view is that an intensional (let alone hyperinten-
sional) context is one that fails to validate transparency, compositional-
ity, and quantifying-in; and vice versa, if a context fails to validate these
extensional principles, then the context is ‘opaque’, that is non-exten-
sional. We steer clear of this circle by defining extensionality for hy-
perintensions presenting functions, functions (including possible-world
intensions), and functional values. The main features of our logic are
that the senses of expressions remain invariant across contexts and that
our ramified type theory enables quantification over any logical objects
of any order into any context. The syntax of TIL is the typed lambda
calculus; its semantics is based on a procedural redefinition of, inter alia,
functional abstraction and application. The only two non-standard fea-
tures of our logic are a hyperintension called Trivialization and a four-
place substitution function (called Sub) defined over hyperintensions.
Using this logical machinery I propose rules of existential generaliza-
tion and substitution of identicals into the three kinds of context.

Keywords. Quantifying-in, extensional/intensional/hyperintensional
context, transparency, ramified type theory, transparent intensional
logic, extensional rules for three kinds of context.

1 Introduction

 In this paper I introduce basic fundamentals of an extensional logic
of hyperintensions developed within procedural semantics of Transpar-
ent Intensional Logic (TIL). Only an extensional logic will validate ex-

Towards an Extensional Calculus of Hyperintensions ____________________________ 21

tensional principles like the rule of existential generalization or Leib-
niz’s law of substitution of identicals. The cornerstone of TIL approach
is that we avail ourselves of rich ontology organised into an infinite bi-
dimensional hierarchy of types. We assign to terms and expressions oc-
curring in hyperintensional contexts the very same meaning that we as-
sign to those very same terms and expressions when occurring in inten-
sional and extensional contexts. As a result of this top-down approach,
the extensional logical rules apply indiscriminately to all contexts. The
upside of our top-down approach is that referential transparency and
compositionality of meaning are preserved throughout, together with
semantic innocence, since we have no recourse to reference shift. At no
point do we invoke contextualist epicycles to somehow create a sec-
ond semantics for ‘non-extensional’ contexts. The perceived downside
would be that we revise the prevalent extensionalist semantic theory of
terms and expressions, in that we universalize Frege’s semantics ear-
marked for Sinn-sensitive contexts to all contexts. Be that as it may, it is
strength of our solution that it is emphatically not tailor-made specifi-
cally for validating extensional principles. Instead it is just yet another
application of a large-scale background theory and our solutions are
principled and not ad hoc .
 The paper is organised as follows. In Section 2 I briefly summarise
the history of the development of logical semantics from Frege via so-
called syntactic and model-theoretic turn up to procedural or algorith-
mic turn. Section 3 introduces the core of TIL so that to describe logical
machinery needed in the main Section 4 where basic principles of ex-
tensional logic of hyperintensions are introduced.

2 Historical Background

 Going back to the history we encounter Frege who was (to the best
of my knowledge) the first who were developing formal semantics. In
(1892) Frege introduced the well-known semantic schema assigning
to expressions their sense (Sinn) and denotation (Bedeutung). Wishing
to save compositionality, Frege made the semantics of an expression
depend on the linguistic context in which it is embedded. According
to Frege an expression names its Bedeutung (extension) in ordinary
contexts and Sinn (intension) in oblique contexts.1 Frege, in an attempt

1 There is another defect in Frege’s semantics; extension of a sentence is its
truth-value. Yet in case of empirical sentences, the truth-value depends on

22___ Marie Duží

to save compositionality, had recourse to contextualism. The price he
paid is too high, indeed. No expression can denote an object, unless a
particular kind of context is provided.2 Yet such a solution is far from
being natural. There are cases of real ambiguity, witness homonymous
expressions. But would anybody say that ‘The author of Waverley’ were
another such a case of homonymy? Hardly; unless, of course, their
intuitions had been warped by Fregean contextualism. Furthermore,
expressions can be embedded within other expressions to various de-
grees; consider the sentence

“Charles knows that Tom believes that the author of Waverley is a
poet.”

The expression ‘The author of Waverley’ should now denote the ‘nor-
mal’ sense of the ‘normal sense’ of itself. Adding still further layers of
embedding sets off an infinite hierarchy of senses, which is to say that
‘The author of Waverley’ has the potential of being infinitely ambigu-
ous. This seems plain wrong, and is first and foremost an awkward
artefact of Fregean semantics (see also Duží – Materna 2010, or Duží –
Jespersen – Materna 2010, §1.5).
 The second half of the last century can be characterized as a lin-
guistic turn in semantics. We were developing systems of particular
logics which are characterized by a language with a precisely defined
syntax and a model set-theoretic semantics. The main goal of building
such a system is to find a subset of sentences of the language, axioms of
the theory, which characterize a given area under scrutiny and apply
proper rules of inference in order to mechanically derive consequences
of the axioms. If the system has a model, then it is consistent, and all
we are interested in is manipulating symbols. Therefore, linguistic or
syntactic turn.
 Says David Kaplan:

During the Golden Age of Pure Semantics we were developing a
nice homogenous theory, with language, meanings, and entities of

contingent facts, which is not a matter of logical semantics. See also Kle-
ment (2002).

2 It is also remarkable that Frege in his effort to save compositionality po-
stulated that even expressions lacking a standard denotation would have a
conventional one. Thus he actually broke the principle of compositionality.
I am grateful for this remark to Marian Zouhar.

Towards an Extensional Calculus of Hyperintensions ____________________________ 23

the world each properly segregated and related one to another in
rather smooth and comfortable ways. This development probably
came to its peak in Carnap’s Meaning and Necessity (1947). Each
designator has both an intension and an extension. Sentences have
truth-values as extensions and propositions as intensions, predicates
have classes as extensions and properties as intensions, terms have
individuals as extensions and individual concepts as intensions ….
The intension of a compound is a function of the intensions of the
parts and similarly the extension (except when intensional operators
appear). There is great beauty and power in this theory. But there
remained some nagging doubts: proper names, demonstratives, and
quantification into intensional contexts. (Kaplan 1990, 13-14)

The mainstream in this direction was Possible World Semantics (PWS).
Kripke characterizes this semantics as follows:

We define a proposition (…) as a mapping whose domain is K [a log-
ical space of possible worlds] and whose range is the set {T, F}. (In-
tuitively, a proposition is something that can be true or false in each
world; and (…) we identify propositions that are strictly equivalent,
i.e. have the same truth-value in each world. (…) Notice that each
proposition determines a unique set of worlds (the set of all worlds
mapped into T), and that conversely each set of worlds determines
a proposition (its ‘characteristic function’). Thus a proposition could
just as well have been defined simply as a subset of K. (Kripke 1963,
§5.3)

 Possible-world intensions are extensionally individuated and the
PWS semantics is a logic of intensions, in particular the model-theoretic
(hence set-theoretic) theory of modalities. Yet its individuation of mean-
ing is too crude (up to equivalence), and thus it is not apt to solve the
notoriously well-known problem of the analysis of belief sentences.
Carnap in (1947) says that modal sentences like “It is necessary that P”
are intensional with respect to the clause P. However, sentences about
belief like “John believes that P” are neither intensional nor extensional
with respect to P. He also criticised Frege’s ‘naming method’ (now we
would say the denotational semantics), because then we multiply the
names ad infinitum, and we end up with the antinomy of naming. For
Carnap, extension is not a matter of logical semantics because it is a mat-
ter of factual knowledge. Prior for the meaning is an intension indepen-
dent of contingent facts that uniquely determines the extension (if any),
but not vice versa .

24___ Marie Duží

 In order to solve the problem of belief sentences, Carnap tried to
define a stronger relation between expressions than L-equivalence that
might rightly calibrate the identity of meaning (i.e. synonymy). He de-
fined inductively the relation of intensional isomorphism on the set of
sentences. Roughly, two sentences S and P are intensionally isomor-
phic if they are L-equivalent and each designator (either simple or com-
posed) that is a constituent of S is L-equivalent to the respective desig-
nator of P. Thus sentences S and P have the same intensional structure
if they are composed in the same way from designators with the same
intensions. In my opinion, all these Carnap’s tenets and philosophical
desiderata are plausible and it might seem that he succeeded in defin-
ing the subject of beliefs, knowledge, convictions, etc. Moreover, his
definition is independent of the language and syntactic structure in
which this subject is encoded. So far so good; yet Carnap’s method has
been criticized by Alonzo Church (1954). Church’s argument is based
on two principles. First, it is Carnap’s principle of tolerance (which it-
self is, of course, desirable), and second, which is less desirable, this
principle makes it possible to introduce into a language syntactically
simple expressions as definitional abbreviations of semantically complex
expressions (for instance, in English ‘fortnight’ standing for ‘a period of
fourteen days’).
 Thus we can introduce into a language primitive symbols P and Q in
this way: P is the set of natural numbers that are less than the number
3 . Q is the set of natural numbers n for which there are natural numbers
x, y, z such that xn + yn = zn . But then P and Q are L-equivalent (because
they denote the same set of numbers) and also intensionally isomorphic
because they have no other constituent designators but themselves. Yet
it is easy to believe that $n (Qn ∧ ¬Pn) without believing that $n (Pn
∧ ¬Pn).3 Church proposes a synonymous isomorphism: all the mutual-
ly corresponding designators must be not only L-equivalent but also
synonymous, where the synonymy of syntactically simple designators
must be postulated as a semantic base of a language. We can postulate
any convention for introducing these synonymous abbreviations, but
as soon as we postulate the meaning of a constant it becomes valid and
cannot be changed by another convention.
 Since the late 60-s of the last century many logicians strived for hy-
perintensional semantics and structured meanings (see also Fox – Lappin

3 For the proof of Fermat’s theorem is difficult to discover (written in 1954).

Towards an Extensional Calculus of Hyperintensions ____________________________ 25

2001). The structured character of meaning was urged by David Lew-
is in (1972), where non-structured intensions are generated by finite,
ordered trees. This idea of ‘tree-like’ meanings obviously influenced
George Bealer’s idea of ‘intensions of the second kind’ in his (1982). The
idea of structured meanings was propagated also by M.J. Cresswell
who defines structured meanings as ordered n-tuples (see Creswell
1975; 1985). That this is far from being a satisfactory solution is shown
in Tichý (1994), Jespersen (2003) and also Bealer (2004). In brief, these
tuples are again set-theoretic entities structured at most from a mereo-
logical point of view, by having elements or parts (though one balks at
calling elements ‘parts’, since sets, including tuples, are not complexes).
Besides, tuples are of the wrong making to serve as truth-bearers and
objects of attitudes, since a tuple cannot be true or be known, hoped,
etc., to be true. Simply, tuples are ‘flat’ from the procedural or algorith-
mic point of view. The way of combining particular parts together is
missing here.
 In 1994 Moschovakis comes with an idea of meaning as algorithm . The
meaning of a term A is “an (abstract, not necessarily implementable) al-
gorithm which computes the denotation of A” (2006, 27; see also 1994).4
Moschovakis outlines his conception thus:

The starting point … [is] the insight that a correct understanding of pro-
gramming languages should explain the relation between a program
and the algorithm it expresses, so that the basic interpretation scheme
for a programming language is of the form

 program P à algorithm(P) à den(P).

It is not hard to work out the mathematical theory of a suitably abstract
notion of algorithm which makes this work; and once this is done, then
it is hard to miss the similarity of the above schema with the basic Fre-
gean scheme for the interpretation of a natural language,

 term A à meaning(A) à den(A).

This suggested at least a formal analogy between algorithms and mean-
ings which seemed worth investigating, and proved after some work to
be more than formal: when we view natural language with a program-
mer’s eye, it seems almost obvious that we can represent the meaning of

4 Moschovakis’ notion of algorithm borders on being too permissive, since
algorithms are normally understood to be effective. (See Cleland 2002 for
discussion.)

26___ Marie Duží

a term A by the algorithm which is expressed by A and which computes
its denotation. (Moschovakis 2006, 42)

 Yet much earlier, in (1968) and (1969) Pavel Tichý formulated the
idea of procedural semantics. Thus, for instance, a sentence encodes an
instruction how in any possible world at any time to execute the abstract
procedure expressed by the sentence as its meaning, i.e., to evaluate the
truth-conditions of the sentence. He developed a logical framework
known today as Transparent Intensional Logic (TIL). In modern jargon,
TIL belongs to the paradigm of structured meaning. However, Tichý
does not reduce structure to set-theoretic sequences, as do Kaplan and
Cresswell. Nor does Tichý fail to explain how the sense of a molecular
term is determined by the senses of its atoms and their syntactic ar-
rangement, as Moschovakis objects to ‘structural’ approaches in (2006,
27).

3 Foundations of TIL

 From the formal point of view, TIL is a hyperintensional, partial
typed l-calculus.5 A main feature of the l-calculus is its ability to sys-
tematically distinguish between functions and functional values. An
additional feature of TIL is its ability to systematically distinguish be-
tween functions and modes of presentation of functions and modes of
presentation of functional values. The TIL operation known as Closure
is the very procedure of presenting or forming or obtaining or construct-
ing a function; the TIL operation known as Composition is the very pro-
cedure of constructing the value (if any) of a function at an argument.
Compositions and Closures are both multiple-step procedures, or con-
structions, that operate on input provided by two one-step construc-
tions, which figure as sub-procedures of Compositions and Closures,
namely variables and so-called Trivializations. Characters such as ‘x’, ‘y’
‘z’ are words denoting variables, which construct the respective val-
ues that an assignment function has accorded to them. The linguistic
counterpart of a Trivialization is a constant term always picking out the
same object. In order to operate on X, X needs to be grabbed first. Trivi-
alization is such a one-step grabbing mechanism. Similarly, in order
to talk about China (in non-demonstrative and non-indexical English
discourse) we need to name China, most simply by using the constant

5 For details on TIL see in particular Tichý (1988, 2004) and Duží et al. (2010).

Towards an Extensional Calculus of Hyperintensions ____________________________ 27

‘China’. Trivialization is important in what follows, because in order to
substitute one sub-construction for another inside a construction it is
crucial to be able to grab those three individual constructions.
 The logical core of TIL is its notion of construction and its type hierar-
chy, which divides into a ramified type theory and a simple type theory.
The ramified type hierarchy organizes all higher-order objects, which
are all constructions, as well as all functions with domain or range in
constructions. The simple type hierarchy organizes first-order objects,
which are non-constructions like extensions (individuals, numbers, sets,
etc.), possible-world intensions (functions from possible worlds) and
their arguments and values. The relevant definitions decompose into
three parts. Firstly, simple types of order 1 are defined by Definition 1.
Secondly, constructions of order n, and thirdly, types of order n + 1 .
	 Definition	1	(types of order 1) Let B be a base, where a base is a col-

lection of pair-wise disjoint, non-empty sets. Then:
(i) Every member of B is an elementary type of order 1 over B.
(ii) Let α, β1, …, βm (m > 0) be types of order 1 over B . Then the col-

lection (α β1 … βm) of all m-ary partial mappings from β1 × … ×
βm into α is a functional type of order 1 over B.

(iii) Nothing is a type of order 1 over B unless it so follows from (i)
and (ii).

Remark. For the purposes of natural-language analysis, we are currently
assuming the following base of ground types, which is part of the onto-
logical commitments of TIL:
 ο: the set of truth-values {T, F};
 ι: the set of individuals (constant universe of discourse);
 τ: the set of real numbers (doubling as temporal continuum);
 ω: the set of logically possible worlds (logical space).
	 Definition	2	(construction)

(i) The variable x is a construction that constructs an object O of the
respective type dependently on a valuation v: x v-constructs O .

(ii) Trivialization: Where X is an object whatsoever (an extension, an
intension or a construction), 0X is the construction Trivialization. It
constructs X without any change.

(iii) The Composition [X Y1…Ym] is the following construction. If X
v-constructs a function f of type (a β1…βm), and Y1, …, Ym v-con-
struct entities B1, …, Bm of types β1, …, βm, respectively, then the
Composition [X Y1…Ym] v-constructs the value (an entity, if any,

28___ Marie Duží

of type a) of f on the tuple argument 〈B1, …, Bm〉. Otherwise the
Composition [X Y1…Ym] does not v-construct anything and so is
v-improper .

(iv) The Closure [λx1…xm Y] is the following construction . Let x1, x2,
…, xm be pair-wise distinct variables v-constructing entities of
types β1, …, βm and Y a construction v-constructing an a-entity.
Then [λx1 … xm Y] is the construction λ-Closure (or Closure). It
v-constructs the following function f of the type (a β1…βm). Let
v(B1/x1,…,Bm/xm) be a valuation identical with v at least up to
assigning objects B1/β1, …, Bm/βm to variables x1, …, xm. If Y is
v(B1/x1, …, Bm/xm)-improper (see iii), then f is undefined on 〈B1,
…, Bm〉. Otherwise the value of f on 〈B1, …, Bm〉 is the a-entity
v(B1/x1,…,Bm/xm)-constructed by Y .

(v) The Single Execution 1X is the construction that either v-constructs
the entity v-constructed by X or, if X is not itself a construction
or X is v-improper, 1X is v-improper.

(vi) The Double Execution 2X is the following construction. Where X is
any entity, the Double Execution 2X is v-improper (yielding noth-
ing relative to v) if X is not itself a construction, or if X does
not v-construct a construction, or if X v-constructs a v-improper
construction. Otherwise, let X v-construct a construction Y and
Y v-construct an entity Z: then 2X v-constructs Z.

(vii) Nothing is a construction, unless it so follows from (i) through
(vi).

	 Definition	3	(ramified hierarchy of types)
 T1 (types of order 1). See Definition 1.
 Cn (constructions of order n)

(i) Let x be a variable ranging over a type of order n . Then x is a
construction of order n over B.

(ii) Let X be a member of a type of order n . Then 0X, 1X, 2X are con-
structions of order n over B.

(iii) Let X, X1,…, Xm (m > 0) be constructions of order n over B . Then
[X X1… Xm] is a construction of order n over B.

(iv) Let x1,…xm, X (m > 0) be constructions of order n over B . Then
[lx1…xm X] is a construction of order n over B .

(v) Nothing is a construction of order n over B unless it so follows
from Cn (i)-(iv).

 Tn+1	(types of order n + 1) Let *n be the collection of all constructions of
order n over B . Then

Towards an Extensional Calculus of Hyperintensions ____________________________ 29

(i) *n and every type of order n are types of order n + 1 .
(ii) If 0 < m and a, b1,…,bm are types of order n + 1 over B, then (a b1

… bm) (see T1 ii)) is a type of order n + 1 over B .
(iii) Nothing is a type of order n + 1 over B unless it so follows from (i)

and (ii).

 Empirical languages incorporate an element of contingency that non-
empirical ones lack. Empirical expressions denote empirical conditions
that may, or may not, be satisfied at some empirical index of evalua-
tion. Non-empirical languages have no need for an additional category
of expressions for empirical conditions. We model these empirical con-
ditions as possible-world intensions. Intensions are entities of type (bw):
mappings from possible worlds to an arbitrary type b. The type b is
frequently the type of the chronology of a-objects, i.e., a mapping of
type (at). Thus a-intensions are frequently functions of type ((at)w),
abbreviated as ‘atw’. I will typically say that an index of evaluation is a
world/time pair 〈w, t〉 . Extensional entities are entities of a type a where
a ≠ (bw) for any type b .
 Examples of frequently used intensions are: propositions of type
otw (denoted by non-indexical sentences), properties of individuals of
type (oi)tw (denoted by predicates or nouns like ‘being happy’, ‘being
a mathematician’), binary relations-in-intension between individuals of
type (oii)tw (usually denoted by verbs like ‘admire’, ‘kick’), individual
offices or roles of type itw (denoted by definite descriptions like ‘pope’,
‘the president of CR’, ‘the first man to run 100 m under 9 s’), binary
relations-in-intension between individuals and hyperintensions of type
(oi*n)tw (denoted by attitudinal verbs like ‘believe’, ‘know’, ‘calculate’,
etc.).
 The method of explicit intensionalization and temporalization en-
codes constructions of possible-world intensions directly in the logi-
cal syntax.6 Where w ranges over w and t over t, the following logical
form essentially characterizes the logical syntax of empirical language:

6 This is one of the issues in which TIL is superior compared to Montague’s
Intensional Logic (IL). Montague applies only implicit intensionalisati-
on; due to the lack of variables ranging over possible worlds (and times)
IL does not validate the Church-Rosser ‘diamond’ property. Moreover,
l-abstraction, modalities and times must be imitated by special operators.
As a result the law of universal instantiation, lambda conversion (β-rule)
and Leibniz’s Law do not generally hold in IL. For a critical comparison of
TIL and Montague’s IL see Duží et al. (2010, § 2.4.3).

30___ Marie Duží

lwlt […w….t…]. If the Composition […w….t…] v-constructs an entity
of type a, then the Closure itself constructs a function of type ((at)w),
or atw for short, i.e. an a-intension.
 Logical objects like truth-functions and quantifiers are extensional: ∧
(conjunction), ∨ (disjunction) and ⊃ (implication) are of type (ooo), and
¬ (negation) of type (oo). Quantifiers ∀a, $a are type-theoretically poly-
morphous total functions of type (o(oa)), for an arbitrary type a, defined
as follows. The universal quantifier ∀a is a function that associates a class
A of a-elements with T if A contains all elements of the type a, other-
wise with F . The existential quantifier $a is a function that associates a
class A of a-elements with T if A is a non-empty class, otherwise with F .
 Notational conventions: Below all type indications will be provided
outside the formulae in order not to clutter the notation. Furthermore,
‘X/a’ means that an object X is (a member) of type a. ‘X →v a’ means
that the type of the object v-constructed by X is a. We write ‘X → a’ if
what is v-constructed does not depend on a valuation v. Throughout,
it holds that the variables w →v w and t →v t. If C →v atw then the fre-
quently used Composition [[C w] t], which is the extensionalization of
the a-intension v-constructed by C, will be encoded as ‘Cwt’. When ap-
plying truth-functions, identities =a/(oaa), arithmetic operations and
relations >a, <a, we will often use an infix notation without Trivializa-
tion and without indicating the type of a function. Instead of ‘[0$a lx B]’,
‘[0∀a lx B]’ (x →v a; B →v o) we will often write ‘$xB’, ‘∀xB’. Thus, for
instance, [0∀tlx [0⊃ [0=t x 00] [0∀tly [0=t [0+ x y] y]]]] will be encoded as
∀x [[x = 00] ⊃ ∀y [[x + y] = y]].
 To summarize, our neo-Fregean semantic schema, which applies to
all contexts, is this:

 Expression
 expresses

 denotes Construction

 constructs

 Denotation

 The most important relation in this schema is between an expres-
sion and its meaning (a construction). We can investigate a priori what
(if anything) a construction constructs and what is entailed by it. Once a

Towards an Extensional Calculus of Hyperintensions ____________________________ 31

construction is explicitly given as a result of logical analysis, the entity
(if any) it constructs is already implicitly given, whereas it requires in-
quiry a posteriori to establish the reference of an empirical term at a giv-
en world/time pair. As a limiting case, the logical analysis may reveal
that the construction fails to construct anything because it is improper.
And if the construction is not improper, the denotation can be either
a first-order object (i.e. a non-construction) or a lower-order construc-
tion. Intensional constructions (constructions of objects of type (bw))
are always proper, since they always construct an intension (includ-
ing degenerate ones, which return no values at all or always the same
value). In linguistic terms, every word whose sense is an intensional
construction has a denotation, but will lack a reference at some or all 〈w,
t〉 pairs, in case its denotation (a partial function) fails to return a value.
This applies to, inter alia, ‘The pope’, ‘The first man to run 100 m under
9 s’, ‘The Evening Star’, or ‘John’s wife’.
	 Definition	4	(free and bound variables) Let C be a construction with

at least one occurrence of a variable x .
(i) Let C be x . Then the occurrence of ξ in C is free .
(ii) Let C be 0X. Then every occurrence of ξ in C is 0bound (‘Trivializa-

tion-bound’).
(iii) Let C be [lx1…xn Y]. Any occurrence of ξ in Y that is one of xi, 1 ≤

i ≤ n, is λ-bound in C unless it is 0bound in Y. Any occurrence of ξ
in Y that is neither 0bound nor λ-bound in Y is free in C .

(iv) Let C be [X X1…Xn]. Any occurrence of ξ that is free, 0bound,
λ-bound in one of X, X1,…,Xn is, respectively, free, 0bound, λ-bound
in C .

(v) Let C be 1X. Then any occurrence of ξ that is free, 0bound, λ-bound
in X is, respectively, free, 0bound, λ-bound in C .

(vi) Let C be 2X. Then any occurrence of ξ that is free, λ-bound in a con-
stituent of C is, respectively, free, λ-bound in C. If an occurrence
of x is 0bound in a constituent 0D of C and this occurrence of D
is a constituent of X’ v-constructed by X, then if the occurrence
of x is free, l-bound in D it is free, λ-bound in C. Otherwise, any
other occurrence of x in C is 0bound in C.

(vii) An occurrence of x is free, λ-bound, 0bound in C only due to (i)-(vi).

A construction with at least one occurrence of a free variable is an
open construction. A construction without any free variables is a closed
construction.

32___ Marie Duží

Definition	 5	 (v-congruent and equivalent constructions) Let C,
D/*n → a be constructions, and ≈v/(o*n*n), ≈/(o*n*n) binary rela-
tions between constructions of order n. Using infix notation without
Trivialization, C ≈v D, C ≈ D, we define: C, D are v-congruent, C ≈v D,
iff either C and D v-construct the same a-entity, or both C and D are
v-improper; C, D are equivalent, C ≈ D, iff C, D are v-congruent for
all valuations v .

Corollaries. If C, D are identical, then C, D are equivalent, but not vice
versa. If C, D are equivalent, then C, D are v-congruent, but not vice
versa.
 If meanings of expressions E1, E2, that is the constructions expressed
by them, are merely v-congruent, we will say that E1, E2 are co-referen-
tial. If meanings of expressions E1, E2 are equivalent, we will say that E1,
E2 are co-denotational or equivalent.
 The next notion we need to define is that of synonymy. Our notion
of synonymy is defined in terms of procedural isomorphism. The term
‘procedural isomorphism’ is a nod to Carnap’s intensional isomorphism
and Church’s synonymous isomorphism . Church’s Alternatives (0) and
(1) leave room for additional Alternatives.7 One would be Alternative
(½), another Alternative (¾). The former includes a- and h-conversion
while the latter adds a restricted b-conversion. If we must choose, we
would prefer Alternative (¾) to soak up those differences between b-
transformations that concern only l-bound variables and thus (at least
appear to) lack natural-language counterparts.
 One reason for excluding unrestricted b-conversion is the well-
known fact that b-conversion is not an equivalent transformation in
logics boasting partial functions, such as TIL. Another reason is that oc-
casionally even b-equivalent constructions have different natural-lan-
guage counterparts; witness the difference between attitude reports de
dicto vs. de re. Thus for instance, if a, b are individuals, the difference
between “a believes that b is happy” and “b is believed by a to be hap-
py” is just the difference between b-equivalent meanings. If attitudes
are construed as in possible-world semantics, i.e. as relations to inten-
sions (rather than to hyperintensions), the former (de dicto) receives the
analysis

 lwlt [0Believewt
0a lwlt [0Happywt

0b]]

7 For Church’s Alternatives see Anderson (1998).

Towards an Extensional Calculus of Hyperintensions ____________________________ 33

while the latter (de re) receives the analysis

 lwlt [lx [0Believewt
0a lwlt [0Happywt x]] 0b]

Types: Happy/(oi)tw; x →v i; a, b/i; Believe/(oiotw)tw .
 The de dicto variant is the b-equivalent contractum of the de re vari-
ant. Both variants are equivalent because they construct one and the
same proposition, the two sentences denoting the same proposition.
Yet they denote this proposition in different ways, thus they are not syn-
onymous. The equivalent b-reduction leads here to a loss of analytic in-
formation, namely loss of information about which of the two ways, or
constructions, has been used to construct this proposition.8 In this case
the loss seems to be harmless, though, because there is only one, unam-
biguous way to b-expand the de dicto version into its equivalent de re
variant.9

 However, unrestricted equivalent b-reduction sometimes yields a
loss of analytic information that cannot be restored by b-expansion. The
well-known example is the sentence “John loves his wife and so does
Tom”. This sentence is ambiguous between two readings, sloppy and
strict. On its sloppy reading John and Tom share the property of each
loving their own wife (and both are exemplary husbands). On the strict
reading they share the property of loving John’s wife (and there are
troubles on the horizon). And these are two distinct properties. Thus
there are two distinct analyses of “John loves his wife”:

 Strict: lwlt [lx [0Lovewt x [0Wife_ofwt 0John] 0John]
 Sloppy: lwlt [lx [0Lovewt x [0Wife_ofwt x] 0John]

 But an unrestricted b-reduction turns these two redexes into one
and the same contractum:

 lwlt [0Lovewt
0John [0Wife_ofwt 0John]]

8 For the notion of analytic information, see Duží (2010) and Duží et al. (2010,
§5.4).

9 In general, de dicto and de re attitudes are not equivalent, but logically inde-
pendent. Consider “a believes that the pope is not the pope” and “a believes
of the pope that he is not the pope”. The former, de dicto, variant makes a
deeply irrational and most likely is not a true attribution, while the latter, de
re, attribution is perfectly reasonable and most likely the right one to make.
In TIL the de dicto variant is not an equivalent β-contractum of the de re va-
riant due to the partiality of the office Pope/ιτω .

34___ Marie Duží

A piece of analytic information has been lost and using the contractum
one does not know which property should be applied to Tom.10
 The restricted version of equivalent b-conversion we have in mind
consists in substituting free variables for l-bound variables of the same
type, and will be called βr-conversion. For instance, we see little reason to
differentiate semantically or logically between “b is believed by a to be
happy” and “b has the property of being believed by a to be happy”.11
The latter sentence expresses

 lwlt [lw’lt’ lx [0Believew’t’ a lwlt [0Happywt x]]wt b]

This is merely a br-expanded form of

 lwlt [lx [0Believewt a lwlt [0Happywt x]] b]

Thus we define:
Definition	 6	 (procedurally isomorphic constructions: Alternative (¾))
Let C, D be constructions. Then C, D are α-equivalent iff they differ at
most by deploying different l-bound variables. C, D are η-equivalent
iff one arises from the other by h-reduction or h-expansion. C, D are
βr-equivalent iff one arises from the other by br-reduction or br-expan-
sion. C, D are procedurally isomorphic, denoted ‘0C ≈

0D’, ≈/(o*n*n), iff
there are closed constructions C1,…,Cm, m≥1, such that 0C = 0C1, 0D =
0Cm, and all Ci, Ci+1 (1 ≤ i < m) are either a-, h- or br-equivalent.

 Hence we advocate for the restricted b-conversion; yet b-conversion
is the fundamental rule for computing the value of the function v-con-
structed by [lx Y] at an argument v-constructed by a construction C. Its
(unrestricted) version ‘by name’ is this (where Y(C/x) is the result of
correct substitution of a construction C for x in Y):

 [[lx Y] C] │ Y(C/x)

10 For the solution of this problem see Duží – Jespersen (to appear).
11 This is not to say we see no reason at all not to differentiate. For instance,

it could be argued that one thing is to believe that a is happy and another
is to believe that a has the property of being happy, because the latter at
least appears to presuppose that the believer have the additional conceptu-
al resources to master the notion of property. Thus a proper calibration of
procedural isomorphism is still an open problem and it can depend on the
area under scrutiny. More discussion on procedural isomorphism can be
found in Jespersen (2010).

Towards an Extensional Calculus of Hyperintensions ____________________________ 35

 Due to compositionality, if C is v-improper the Composition [[lx Y] C]
is v-improper as well. But if Y is itself a Closure then it is never v-im-
proper.12 Thus it may happen that the right-hand side is not equivalent
to the left-hand side. For this reason we restrict the rule to C being a
variable which is never v-improper.
 But we do need a general rule of the l-calculus for computing the
value of a function. Fortunately, it turns out to be feasible to formu-
late a generally valid computational rule. A distinction familiar from
programming languages based on the l-calculus holds the key to the
solution. The invalid rule above is moulded on the programming tech-
nique of calling a sub-procedure C by name: the sub-procedure itself is
substituted for the ‘local variable’ x in the ‘procedure body’ Y. It is well-
known among programmers that this technique can have undesirable
side-effects, unlike the technique of calling a sub-procedure by value.13
The idea is simple: execute the sub-procedure C first, and then – pro-
vided this execution does not fail – substitute the construction of the result
(‘pass by the value’) for x .14
 The substitution method comes with two special functions.15 The
polymorphous function Sub of type (*n*n*n*n) operates on constructions
as follows. When applied to constructions C1, C2, C3, Sub returns as its
value the construction D that is the result of the correct (i.e. collision-
less) substitution of C1 for C2 in C3. For instance, the result of the Com-
position [0Sub 00John 0x 0[0Wife_ofwt x]] is the Composition [0Wife_ofwt
0John]. The likewise polymorphous function Tr returns as its value the
Trivialization of its argument. Thus the result of [0Tr 0John] is 0John.
If the variable x ranges over i, the Composition [0Tr x] v(John/x)-con-
structs 0John. Note one essential distinction between the function Tr and
the construction Trivialization. Whereas the variable x is free in [0Tr x],

12 See Definition 2, iii) and iv).
13 A recent reference to the distinction between ‘call by name’ and ‘call by

value’ is Pierce (2002, 56-57). See also, for instance, Hyde (1996, Ch. 11) or
Plotkin (1975).

14 For conversion by name, see Claim 2.5 and the subsequent proof in Duží
et al. (2010, 267-268); for conversion by value, see Claim 2.6 and the sub-
sequent proof in (ibid., 269-270). For the general strategy (inspired by pro-
gramming languages) of distinguishing between succeeding, failing, and
aborting with error, see also Van Eijck – Francez (1995).

15 Sub is introduced in Tichý (1988, 75) and Tr at (ibid., 68).

36___ Marie Duží

the Trivialization 0x binds the variable x by constructing just x indepen-
dently of valuation.16

 For simplicity’s sake, we introduce the TIL translation of the rule
of b-conversion by value in its simplified version for unary functions
(generalization to n-ary functions is obvious):

 [[lx Y] C] │ 2[0Sub [0Tr C] 0x 0Y]

 Note that the Composition on the right-hand side must undergo
Double Execution. Provided C is v-proper, it v-constructs an entity, say
e. Then the result of the first step (the substitution [0Sub [0Tr C] 0x 0Y])
is the construction Y(e/x). The resulting construction must then be ex-
ecuted in order to obtain the value of the function v-constructed by
[lx Y] at the argument e. Hence, Double Execution. Otherwise, if C is
v-improper, the substitution fails to construct anything, because due to
the compositionality constraint the whole Composition [0Sub [0Tr C] 0x
0Y] is v-improper and so is 2[0Sub [0Tr C] 0x 0Y] (see Definition 2, iii) and
vi)). In this manner compositionality is preserved and the above rule of
b-conversion by value is always valid even when C is v-improper.
 Remark. In the project of a multi-agent system that our Laboratory of
Intelligent Systems dealt with in 2004-2008 we use the computational
variant of TIL, the TIL-Script functional programming language as the
language of communication between agents.17 In the TIL-Script lan-
guage we apply only this computational rule of conversion by value . The
reason is this. Since the construction C can be v-improper, we need to
implement a lazy evaluation mechanism in order to evaluate C only
when needed. However, the properness of C can be checked only in
the run time, because valuation v would supply values dependently on
states-of-affairs.

16 Since TIL is a l-calculus, all variable binding is l-binding, except for Trivi-
alization-binding. One area where Trivialization-binding plays a key role
is existential quantification into hyperintensional contexts, where a quan-
tifier is introduced with a view to binding a variable that occurs bound by
Trivialization, because the variable occurs inside a Trivialized context. For
discussion, see Duží et al. (2010, §5.3). For improved solutions, see Duží –
Jespersen (to appear).

17 Project No. 1ET101940420: “Logic and Artificial Intelligence for multi-agent sys-
tems”; supported by the program “Information Society” of the Czech Academy of
Sciences. For details see http://labis.vsb.cz/.

Towards an Extensional Calculus of Hyperintensions ____________________________ 37

4 Rules for the Three Kinds of Context

 At this point we have lined up everything we need in order to in-
troduce the extensional logic of hyperintensions. Yet some may protest
that extensional logic of hyperintensions sounds as an oxymoron like a
roaring silence. For at least since the milestones Quine (1956) and Ka-
plan (1968) the validity of extensional principles, in particular of quan-
tifying-in and existential generalization, has been fielded as a logical
criterion for distinguishing

 a) extensional/transparent/‘relational’ contexts from
 b) non-extensional/opaque/‘notional’ contexts,

the idea being that extensional (etc.) contexts are those that validate
quantifying-in.18 And conversely, if a context resists quantifying-in, it
is caught in violation of one or more of the laws of extensional logic
and as such eludes full logical analysis. What we are saying is that also
intensional and hyperintensional contexts may be quantified into, but
that the feasibility of doing so presupposes that it be done within an
extensional logic of hyperintensional contexts. Deploying a non-extension-
al logic of hyperintensions to quantify into hyperintensional contexts
would, indeed, be a non-starter, generating opacity and thereby mak-
ing hyperintensional attitude contexts logically intractable. However,
whether one accepts quantifying into (hyper-) intensional contexts or
wants to restrict quantification to extensional contexts, like “Mary is
happy”, the logical question remains which contexts validate quanti-
fying-in.
 Tichý issues in (1986, 256; 2004, 654) a warning against a circular
definition:

 Q: When is a context extensional?
 A: A context is extensional if it validates
 (i) the rule of substitution of co-referential terms and
 (ii) the rule of existential generalization .
 Q: And when are (i), (ii) valid?
 A: Those two rules are valid when applied to extensional contexts.

We steer clear of the circle by defining extensionality for

 a) hyperintensions presenting functions,

18 See Forbes (1996).

38___ Marie Duží

 b) functions (including possible-world intensions), and
 c) functional values .

These three levels are squared off with three kinds of context:19

1 . hyperintensional contexts, in which a construction is not used to
present an object, but is itself mentioned as functional argument
(though a construction of one order higher needs to be used to
mention this lower-order construction);

2 . intensional contexts, in which a construction is used to present a
function without presenting a particular value of the function
(moreover, the construction does not occur within another hyper-
intensional context);

3 . extensional contexts, in which a construction is used to produce a
particular value of the function at a given argument (moreover,
the construction does not occur within another intensional or hy-
perintensional context).

 Example. Let the types of entities be: Periodic/(o(tt)); Sin/(tt); Solve/
(o(i*1))tw: the relation-in-intension between an individual and a con-
struction the product of which the individual is seeking; p/t ; Tom/i .

• Extensional context: functional value is an object of predication
(functional argument):

 “sin π = 0”
 [[0Sin 0π] = 00]

• Intensional context: function-in-extension is an object of predica-
tion:
“Sine is a periodic function”
[0Periodic 0Sin]

• Hyperintensional context: construction (“function-in-intension”)
is an object of predication (a functional argument):
“Tom is solving the equation sin x = 0”
lwlt [0Solvewt 0Tom 0[lx [0Sin x] = 00]]

 A dual constraint of TIL has impact on the rules of inference. It is
the constraint dictated by properly partial functions, which are undefined
for some or all of their arguments, and improper constructions, which

19 For the definition see Duží et al. (2010, § 2.6 and 2.7).

Towards an Extensional Calculus of Hyperintensions ____________________________ 39

fail to produce a product. Improperness stems from the procedure of
applying a properly partial function f to an argument a, such that f re-
turns no value at a. The procedure of functional application induces an
extensional context. Thus when specifying the rules of quantifying-in,
we must check whether particular constituent constructions occurring
extensionally are improper. If none is, the particular rule of quantify-
ing-in is valid.
 The rules of improperness can be schematically summarized as fol-
lows. If a Composition is used in an extensional context as a procedure
of application a properly partial function F/(ba) to an argument a/a
and if F has no-value at a (value gap) then

 [0F 0a] is v-improper

and so is any construction C occurring extensionally and containing [0F
0a] as a constituent; partiality is strictly propagated up:

 [… [… [0F 0a] …] …] is improper

until the context is raised up to hyper/intensional:

 intensional: lx… [… [… [0F 0a] …] …] is proper
 hyperintensional: 0[… [… [0F 0a] …] …] is proper

4.1	 The	Rules	of	Existential	Generalization

 Let F/(ba); a/a. Then the rules of existential generalization for par-
ticular contexts are as follows:

 a) extensional context. Let […[0F 0a]…] v-construct the truth-value T .
Then the following rule is truth-preserving:
 […[0F 0a]…] | $x […[0F x] …]; x →v a
Proof:
 1. […[0F 0a]…] assumption
 2. […[0F x] …] v(a/x)-constructs T
 3 . lx […[0F x]…] v-constructs a non-empty class
 4 . [0$lx […[0F x]…]] EG, 3

Example: lwlt [0Wisewt 0Popewt] ╞ lwlt $x [0Wisewt x];
Types: Wise/(oi)tw; Pope/itw; x →v i .

 b) intensional context. Let […ly [… [0F 0a] …]] v-construct T . Then
the following rule is truth-preserving:

40___ Marie Duží

 […ly [… [0F 0a] …]] | $f […ly [… [f 0a] …]]; f →v (ba)
Proof:
 1. […ly [… [0F 0a] …]] assumption
 2. […ly [… [f 0a] …]] v(F/f)-constructs T
 3 . lf […ly [… [f 0a] …]] v-constructs a non-empty class
 4 . [0$lf […ly [… [f 0a] …]]] EG, 3

Example: lwlt [0Believewt 0b lwlt [0Wisewt 0Popewt]] |
lwlt $f [0Believewt 0b lwlt [0Wisewt fwt]];

Additional types:
Believe/(oiotw)tw: an intensional attitude to a proposition; f →v itw
Gloss: If b believes that the Pope is wise then there is an office such that
b believes that its holder is wise.

 c) hyperintensional context. Let [… 0[… [0F 0a] …]] v-construct T .
Then the following rule is truth-preserving:20

 [… 0[… [0F 0a] …]] | $c 2[0Sub c 00F 0[… 0[… [0F 0a] …]]];
 c →v *n; 2c →v (ba)
Proof.
 1. [… 0[… [0F 0a] …]] assumption
 2 . 2[0Sub c 00F 0[… 0[… [0F 0a] …]]] v(0F/c)-constructs T

 3 . lc 2[0Sub c 00F 0[… 0[… [0F 0a] …]] v-constructs a non-emp-
ty class

 4 . [0$lc 2[0Sub c 00F 0[… 0[… [0F 0a] …]]] EG, 3

 The step 2 may be difficult to understand. Here is an additional
explanation. The Composition [0Sub c 00F 0[… 0[… [0F 0a] …]]] v(0F/c)-
constructs the Composition [… 0[… [0F 0a] …]]. In order to v-construct
T, this Composition must be executed again. Therefore, Double Execu-
tion .
Example: lwlt [0Believe*wt 0b 0[lwlt [0Wisewt 0Popewt]] |

lwlt $c [0Believe*wt 0b [0Sub c 00Pope 0[lwlt [0Wisewt 0Popewt]]]];
Additional types:
Believe*/(oi*n)tw: a hyperpropositional belief; c →v *n; 2c →v itw .
Gloss: If b (explicitly) believes* that the Pope is wise, then there is a con-
cept of an office such that b believes* that the holder of the office is wise.

20 I distinguish between a derivation rule, denoted ‘| ’, and analytic entail-
ment, denoted ‘╞ ’. Of course, if a particular rule is truth-preserving then
the corresponding entailment is valid.

Towards an Extensional Calculus of Hyperintensions ____________________________ 41

Note: In this example the [0Sub c 00Pope 0[lwlt [0Wisewt 0Popewt]]] is not
Double executed, because b is related just to the Composition itself con-
structed by this substitution.
 Hyperpropositional attitudes must be used if the attributer is repro-
ducing faithfully b’s perspective. For instance, suppose that the office of
Pope is identical with the office of the Bishop of Rome. Then it may be
the case that though b believes that the Pope is wise, he may disbelieve
that the Bishop of Rome is wise.

4.2	 Leibniz’s	Rule	of	Substitution	in	the	Three	Kinds	of	Context

 a) In an extensional context substitution salva veritate of v-congruent
constructions is valid.
Example .
 “The president of CR is the husband of Livia Klausova”
 “The president of CR is an economist”

 “The husband of Livia Klausova is an economist”
Proof:
1 . lwlt [0President_ofwt 0CR]wt ≈v lwlt [0Husband_ofwt 0Livia]wt assumpt.
2 . [0Economistwt lwlt [0President_ofwt 0CR]wt] assumpt.

3 . [0Economistwt lwlt [0Husband_ofwt 0Livia]wt] Leibniz 2)

Types: President_of/(ii)tw; CR/i; Husband_of/(ii)tw; Livia/i; Economist/
(oi)tw;

 b) In an intensional context substitution salva veritate of equivalent
constructions is valid.
Example .
 “The president of CR is the highest representative of CR”
 “Tom wants to become the president of CR”
 “Tom wants to become the highest representative of CR’’

Proof:
1 . lwlt [0President_ofwt 0CR] ≈ lwlt [0Highest_Rep_ofwt 0CR] assumpt.
2 . [0Want_bewt

0Tom lwlt [0President_ofwt 0CR]] assumpt.

3 . [0Want_bewt
0Tom lwlt [0Highest_Rep_ofwt 0CR]] Leibniz 2)

Additional types. Highest_Rep_of/(ii)tw; Want_be/(oiitw)tw: the relation-
in-intension of an individual to an individual office; Tom/i .

42___ Marie Duží

 c) In a hyperintensional context substitution salva veritate of proce-
durally isomorphic constructions is valid.

Example. Suppose that ‘azure’ and ‘sky-blue’ are synonymous.

 “Tom believes* that Marie’s blouse is azure”

 “Tom believes* that Marie’s blouse is sky-blue”
Proof.

1 . [0Believe*wt
0Tom 0[lwlt [0Azurewt [0Blouse_ofwt 0Marie]]]] assumpt.

2 . 00Azure ≈
00Sky_Blue assumpt.

3 . [0Believe*wt
0Tom 0[lwlt [0Sky_Bluewt [0Blouse_ofwt 0Marie]]]] Leibniz

 Some might object that this argument is invalid, because it is pos-
sible that Tom believes that Marie’s blouse is azure without believing
that Marie’s blouse is sky-blue. We disagree and on this point we refer
to Richard who says:

… It is impossible for a (normal, rational) person to understand ex-
pressions which have identical senses but not be aware that they
have identical senses. (Richard 2001, 546-7)

 Since the meanings of ‘azure’ and ‘sky-blue’ are identical by as-
sumption, the two Trivializations 0Azure and 0Sky_Blue are not only
equivalent but also identical, hence procedurally isomorphic. Hence the
paradox of analysis is not a problem of hyperintensionality. Rather,
it is a matter of linguistic incompetence (failure to recognize pairs of
synonyms) and not of logical incompetence (failure to recognize pairs of
procedurally isomorphic hyperintensions).

5 Conclusion

 Once the three kinds of context, namely extensional, intensional and
hyperintensional are defined, the extensional rules like the substitu-
tion of identicals and quantification into non-extensional contexts are
trivially valid. There is no cogent reason for invalidity of Leibniz’s law.
Only that we must substitute that object which is the object of predica-
tion in a given context.
 Quantifying into hyperintensional contexts requires an extensional
logic of hyperintensions. Much non-trivial footwork is required to lay out
such a large-scale logical semantics. Once this is done, though, quanti-

Towards an Extensional Calculus of Hyperintensions ____________________________ 43

fying into hyperintensional and intensional contexts turns out to be as
trivially valid as quantifying into extensional contexts. However quan-
tifying into hyperintensional contexts introduces a technical complication
absent in quantifying into intensional and extensional contexts. In a hy-
perintensional context a construction occurs mentioned (as an argument
of another function) rather than used (to construct a function). The
complication is that, since every constituent of a mentioned construction
itself occurs mentioned, the quantifier cannot bind any variables inside
the hyperintensional context, thus rendering quantifying-in impossi-
ble. The solution consists in applying a substitution technique that makes
the variables amenable to binding. Moreover, the substitution method
made it possible to introduce the generally valid computational rule of
a partial lambda calculus, viz. reduction ‘by value’.

Department of Computer Science
VSB – Technical University
17. listopadu 15
708 33 Ostrava
Czech Republic
marie.duzi@vsb.cz

Acknowledgements. This research was funded by the Grant Agency of the
Czech Republic, project No. 401/10/0792, “Temporal aspects of knowledge
and information” and also by the internal grant agency of VSB-TU Ostrava,
project No. SP2012/26 „An utilization of artificial intelligence in knowledge
mining from software processes“. Versions of this study were read by the au-
thor as an invited talk at the University of Western Australia, Perth, Australia,
February 25th, 2011.

References

anDerson, C. A. (1998): Alonzo Church’s contributions to philosophy and
intensional logic. The Bulletin of Symbolic Logic 4, 129-171.

bealer, G. (1982): Quality and Concept. Oxford: Clarendon Press.
bealer, G. (2004): An inconsistency in direct reference theory. The Journal of

Philosophy 111, 574-93.
carnaP, R. (1947): Meaning and Necessity. Chicago: Chicago University Press.
church, A. (1954): Intensional isomorphism and identity of belief. Philosophi-

cal Studies 5, 65-73.
church, A. (1993): A revised formulation of the logic of sense and denotation.

Alternative (1). Noûs 27, 141-157.

44___ Marie Duží

clelanD, C. E. (2002): On effective procedures. Minds and Machines 12, 159-179.
cressweLL, M. J. (1975): Hyperintensional logic. Studia Logica, No. 34, 25-38.
cressweLL, M. J. (1985): Structured Meanings. Cambridge: MIT Press.
Duží, M. (2010): The paradox of inference and the non-triviality of analytic

information. Journal of Philosophical Logic, 39, 5, 473-510.
Duží, M. – JesPersen, b. – Materna, P. (2010): Procedural Semantics for Hyperin-

tensional Logic. Foundations and Applications of Transparent Intensional Logic .
First edition. Berlin: Springer.

Duží, M. – JesPersen, B. (to appear): Procedural isomorphism and restricted
β-reduction. Logic Journal of the IGPL .

Duží, M. – Materna, P. (2010): Can concepts be defined in terms of sets? Logic
and Logical Philosophy, 19, 195-242.

eiJck, J. van – Francez, n. (1995): Verb-phrase ellipsis in dynamic semantics.
In: Masuch, M. – Polos, L. (eds.): Applied Logic: How, What and Why? Klu-
wer, 29-60.

Forbes, G. (1996): Substitutivity and the coherence of quantifying in. The Philo-
sophical Review, 105, 337-371.

Fox, C. – laPPin, s. (2001): A framework for the hyperintensional semantics of
natural language with two implementations. Lecture Notes in Computational
Linguistics, vol. 2009, 175-92.

FreGe, G. (1892): Über Sinn und Bedeutung. Zeitschrift für Philosophie und phi-
losophische Kritik 100, 25-50.

hyde, R. (1996): The Art of Assembly Language Programming. Available: http://
www.arl.wustl.edu/~lockwood/class/cs306/books/artofasm/toc.html.

JesPersen, B. (2003): Why the tuple theory of structured propositions isn’t a
theory of structured propositions. Philosophia 31, 171-183.

JesPersen, B. (2010): How hyper are hyperpropositions? Language and Linguis-
tics Compass 4, 96-106.

kaPlan, D. (1968): Quantifying in. Synthese 19, 178-214.
kaPlan, D. (1986): Opacity. In: Hahn, L. (ed.): The Philosophy of W.V. Quine. La

Salle: Open Court, 229-289.
kaPlan, D. (1990): Dthat. In: Cole, P. (ed.): Syntax and Semantics. Vol. 9. New

York: Academic Press. Reprinted in: Yourgrau, P. (ed.): Demonstratives.
Oxford: Oxford University Press.

kleMent, k. c. (2002): Frege and the Logic of Sense and Reference. New York:
Routledge.

kriPke, S. (1963): Semantical considerations on modal logic. Acta Pilosophica
Fennica, 16, 83-94.

Lewis, D. (1972): General semantics. In: Davidson, D. – Harman, G. (eds.): Se-
mantics of Natural Language. Dordrecht: Reidel.

MoscHovakis, Y. N. (1994): Sense and denotation as algorithm and value. In:
Väänänen, J. – Oikkonen, J. (eds.): Lecture Notes in Logic. Vol. 2. Berlin:
Springer, 210-249.

MoscHovakis, Y. N. (2006): A logical calculus of meaning and synonymy. Lin-
guistics and Philosophy 29, 27-89.

Pierce, C. B. (2002): Types and Programming Languages . London: MIT Press.

Towards an Extensional Calculus of Hyperintensions ____________________________ 45

Plotkin, G. D. (1975): Call-by-name, call-by-value and the l-calculus. Theoreti-
cal Computer Science, 1, 125-159.

Quine, W. V. O. (1956): Quantifiers and propositional attitudes. Journal of Phi-
losophy 53, 177-186.

ricHarD, M. (2001): Analysis, synonymy and sense. In: Anderson, C. A. – Zele-
ny, M. (eds.): Logic, Meaning and Computation: Essays in Memory of Alonzo
Church. Synthese Library, vol. 305, Dordrecht: Kluwer, 545-71.

ticHý, P. (1968): Smysl a procedura. Filosofický časopis 16, 222-232. Translated
as ‘Sense and procedure’ in Tichý (2004, 77-92).

ticHý, P. (1969): Intensions in terms of Turing machines. Studia Logica 26, 7-25.
Reprinted in Tichý (2004, 93-109).

ticHý, P. (1988): The Foundations of Frege’s Logic. Berlin – New York: De
Gruyter.

ticHý, P. (1994): The analysis of natural language. From the Logical Point of
View 3, 42-80. Reprinted in Tichý (2004, 801-841).

ticHý, P. (2004): Collected Papers in Logic and Philosophy. Edited by V. Svoboda,
B. Jespersen, C. Cheyne. Prague: Filosofia, Dunedin: University of Otago
Press.

