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The Role of Priors in a Probabilistic Account  
of “Best Explanation” 

ANTON DONCHEV1 

ABSTRACT: In this paper, I argue that the notion of “best explanation”, as it appears 
in the Inference to the Best Explanation (IBE), can be defined in terms of explanatory 
power (EP) (i.e. the best explanation among a set of possible explanations is the one 
having the highest EP), if we employ a probabilistic measure of EP, which takes into 
account both the likelihoods and the prior probabilities of the compared explanatory 
hypotheses. Although the association between the EP of a hypothesis and its likeli-
hood is largely uncontroversial, most of those working on EP do not see an associa-
tion between EP and the prior probability of an explanatory hypothesis. I provide 
three examples (two toy examples and one from real scientific practice), in order to 
show that the role of priors in decisions about the best explanatory hypothesis de-
serves a serious consideration. I also show that such an explication of “best explana-
tion” allows us to compare IBE and Bayesian confirmation theory (BCT) in terms of 
the probabilities they assign to two competing hypotheses, and thus to elicit the con-
ditions under which both IBE and BCT lead to the same conclusion and are in this 
sense compatible. 
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1. Introduction 

 The present state of the literature on Inference to the Best Explanation 
(IBE) reveals two problems of considerable importance. On one hand, there 
is no clear explication of the term “best explanation”. The main idea driving 
the need for such an explication is that, in order to “infer to the best explana-
tion” out of a set of competing explanations, we need a clear way of compar-
ing and/or grading the explanations within that set. However, one of the best-
known accounts of a mechanism of comparing explanations, i.e. Lipton’s 
(2004), uses the term “loveliest explanation”, where “loveliest” is an um-
brella term for a set of undefined number of explanatory virtues, such as sim-
plicity, unification or scope, most of which also lack clear formal explica-
tions (cf. Norton 2016). Another example of the same problem is the classical 
(or textbook) form of IBE, which is often expressed by the following rule: 

Given evidence 𝐸𝐸 and candidate explanations 𝐻𝐻1 , … 𝐻𝐻𝑛𝑛 of 𝐸𝐸, infer the 
truth of that 𝐻𝐻𝑖𝑖  which best explains 𝐸𝐸. (Douven 2011) 

 The above rule fails to answer the crucial question at the heart of IBE – 
how do we find which is the best explanation of the evidence, out of a set 
of competing explanatory hypotheses. Its failure in that respect has in fact 
prompted Schurz to claim that IBE “is epistemically rather uninformative” 
(Schurz 2008, 204). 
 On the other hand, there is the issue of IBE’s compatibility with Bayes-
ian Confirmation Theory (BCT). Incompatibilist philosophers of confirma-
tion claim that IBE and BCT are two irreconcilable methods of confirma-
tion, of which only one is rational. Here belong arguments such as van 
Fraassen’s, who claims that any probabilistic formulation of IBE should 
either: be equivalent to Bayes’ rule, and is thus redundant; or, if it is not 
equivalent to Bayes’ rule, it has to provide a satisfactory answer to the 
Dutch book argument (cf. van Fraassen 1989). Another argument for IBE 
– BCT incompatibilism is the claim that “confirmation is logically inde-
pendent of explanation” (Salmon 2001, 88), and so explanatory considera-
tions, such as those driving IBE, should not enter into a method of confir-
mation, such as BCT. In the end, most incompatibilists’ accounts are skep-
tical towards the role of IBE as a genuine rule of non-deductive inference 
(see also Iranzo 2008; Norton 2016). 
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 However, both incompatibilists and compatibilists tend to view the is-
sue of IBE – BCT compatibility as a two-sided matter. Either these ap-
proaches to confirmation are deemed completely incompatible – as one is 
rational and the other is not, or they are deemed completely compatible and 
assumed to work in tandem. The problem with such views is that there are 
different possible explications of IBE, and different models of BCT. Some 
of these may turn out to be compatible, while others may not. What is more, 
an IBE explication may be compatible with a specific Bayesian model of 
confirmation only under certain conditions. 
 Ultimately, the question whether IBE and BCT are compatible or not 
will depend upon a future investigation into these conditions; and in order 
to enable such an investigation, IBE and BCT should first be translated into 
the same language. The key to such a translation is to find an adequate 
probabilistic explication of the term “the best explanation”. There have 
been several attempts in the literature to give such explications of “the best 
explanation”, in the form of measures of explanatory power (EP).2 How-
ever, no direct measure of EP that I know of accounts for the prior proba-
bilities of the explanatory hypotheses. As I show in the next part, insensi-
tivity to priors may lead to very counterintuitive conclusions in certain 
cases. Therefore, it seems that an adequate probabilistic explication of “the 
best explanation” should take into account not only likelihoods, but priors 
as well. Interpreting IBE probabilistically in this way has three distinct ad-
vantages. First, it provides a mechanism for actually finding the best ex-
planation. Second, it can account for cases in science, which can be ac-
counted for by neither classical IBE, nor explications of “the best explana-
tion” insensitive to priors. Third, it enables comparisons between IBE and 
specific Bayesian models of confirmation, in order to investigate the con-
ditions under which these two approaches to confirmation may turn out to 
be compatible. 

2. A probabilistic measure of EP should account for priors 

 A viable approach to solving the first problem outlined in the introduc-
tion – IBE’s lack of mechanism of comparing competing explanations – is 

                                                           
2  For lists of such measures see e.g., Schupbach (2011) and Glymour (2015). 
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to seek a probabilistic explication of the key term “best explanation”. In 
other words, we may strive to provide a probabilistic mechanism to com-
pare competing hypotheses in terms of their EP. The question “which one 
is the best explanation”, would then receive the answer “the one that has 
the highest explanatory power according to such-and-such probabilistic 
measure”. There are a few direct measures of EP in the literature, such as 
the one by Schupbach & Sprenger (2011): 

𝐸𝐸𝐸𝐸1(𝐸𝐸, 𝐻𝐻) =
𝑃𝑃(𝐻𝐻|𝐸𝐸) − 𝑃𝑃(𝐻𝐻|¬𝐸𝐸)
𝑃𝑃(𝐻𝐻|𝐸𝐸) + 𝑃𝑃(𝐻𝐻|¬𝐸𝐸)

 

Crupi & Tentori (2012) have proposed another measure: 

𝐸𝐸𝐸𝐸2(𝐸𝐸, 𝐻𝐻) =

⎩
⎪
⎨

⎪
⎧𝑃𝑃(𝐸𝐸|𝐻𝐻) − 𝑃𝑃(𝐸𝐸)

1 − 𝑃𝑃(𝐸𝐸)
𝑚𝑚𝑖𝑖 𝑃𝑃(𝐸𝐸|𝐻𝐻) ≥ 𝑃𝑃(𝐸𝐸)

𝑃𝑃(𝐸𝐸|𝐻𝐻) − 𝑃𝑃(𝐸𝐸)
𝑃𝑃(𝐸𝐸)

𝑚𝑚𝑖𝑖 𝑃𝑃(𝐸𝐸|𝐻𝐻) < 𝑃𝑃(𝐸𝐸)
 

 In addition, there are several more direct measures of EP, which have 
been created from different measures of confirmation (see Schupbach 
2011).3 
 So far, all proposed direct measures of EP share a common character-
istic – they are not influenced by prior probabilities. For example, the 
measure of Schupbach & Sprenger (2011) is, at first glance, dependent 
on posterior probabilities and thus on the priors which form them, yet 
calculations reveal that this is not the case and the priors actually cancel 
each other out. 
 However, there are examples, which seem to show that prior probabili-
ties play a major role in our decisions about the best explanation. Consider 
the following simple case: 

                                                           
3  There are also some probabilistic measures of unification or coherence, which have 
been proposed as indirect measures of EP, e.g., Myrvold (2003), Fitelson (2003), Glass 
(2007), Wheeler (2009). These fall outside the scope of the current argument, which 
focuses on direct measures of EP. 



 T H E  R O L E  O F  P R I O R S  I N  A  P R O B A B I L I S T I C  A C C O U N T  …  515 

Waking up in the morning you see that the grass is wet (𝐸𝐸). You form 
two hypotheses explaining this fact: 
𝐻𝐻1: “It rained tonight.” 
𝐻𝐻2: “The gardener watered the lawn earlier in the morning.” 

 These hypotheses have the same likelihoods, i.e. 𝑃𝑃(𝐸𝐸|𝐻𝐻1)  =  𝑃𝑃(𝐸𝐸|𝐻𝐻2), 
because both 𝐻𝐻1 and 𝐻𝐻2 entail 𝐸𝐸 (the wet lawn). Suppose, however, that 
you made this observation in July and you live in a place where rains in 
July are extremely rare. Based on this background knowledge, you assign 
a very low prior probability to 𝐻𝐻1. What is more, intuitively, the gardener 
watering the lawn is a far better explanation of the wet grass, than the ex-
tremely improbable rain in July. In order to capture that intuition, a meas-
ure of EP should account for prior knowledge. In other words, it should 
reach the intuitive conclusion, that even though the likelihoods of the two 
hypotheses are the same, the one with the higher prior better explains the 
evidence you have observed. The likelihood-only based measures cannot 
reach that result, and are forced to conclude that 𝐻𝐻1 and 𝐻𝐻2 are of equal 
EP, which is highly unintuitive in that case. 
 The above example is quite simplistic, so let us push the argument for 
the importance of priors in EP with a second, more complex example: 

Patient X (aged 45) has paresis (𝐸𝐸). This could be the result of various 
medical conditions, but for the sake of simplicity, we will take into ac-
count only two: 
𝐻𝐻1: “X had untreated syphilis.” 
𝐻𝐻2: “X had a stroke.” 

By previously consulting X’s medical record, as well as various other 
sources of medical information, his physician brings into the case the fol-
lowing information: 

 i)  X was diagnosed with syphilis, but not treated for it: 𝑃𝑃(𝐻𝐻1) =
 0.9; 

 ii)  About 25% of those who have untreated syphilis get paresis in 
later age: 𝑃𝑃(𝐸𝐸|𝐻𝐻1)  =  0.25; 

 iii)  About 80% of stroke survivors get some kind of paresis: 
𝑃𝑃(𝐸𝐸|𝐻𝐻2)  =  0.8; 
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 iv)  The physician does not know whether X had a stroke, but she 
knows that about 0.2% –  0.4% of the population of his age are 
at a high risk of stroke, i.e. 𝑃𝑃(𝐻𝐻2)  ≈  0.004. 

 Although the likelihood of the stroke hypothesis is greater than the like-
lihood of the paresis one (i.e. 𝑃𝑃(𝐸𝐸|𝐻𝐻2)  >  𝑃𝑃(𝐸𝐸|𝐻𝐻1)), most physicians, 
given the information in i) – iv) would assign higher EP to 𝐻𝐻1. In other 
words, most physicians would explain the paresis with the untreated syph-
ilis. What this example aims to illustrate again is that priors may play an 
important role in some decisions about the best explanation, so much so, 
that they may overturn a large difference in likelihoods. A probabilistic 
measure of EP, which is not sensitive to priors, and depends solely on like-
lihoods, will not be able to account for such cases, i.e., if we applied such 
a measure to these kind of cases, we would be led to counterintuitive re-
sults. 
 In summary, an adequate probabilistic interpretation of IBE should aim 
at a probabilistic explication of the key term “best explanation”, thus giving 
IBE the means to answer the question “how do we find the best amongst 
competing explanations”. This is a clear advantage over classical IBE, 
which is silent on this crucial question. The explication of the “best expla-
nation” would be in the form of a probabilistic measure of EP; however, 
the measure should be influenced by the prior probabilities of the evaluated 
hypotheses, in contrast to the direct measures of EP proposed in the litera-
ture. If the measure does not account for priors, it runs into two kinds of 
problems. On the one hand, it will provide counterintuitive results in cer-
tain cases, as illustrated by the above toy-examples. On the other hand, it 
will fail to account for real cases in science, as will be shown in the next 
part. 
 Providing and defending the prescribed new measure of EP are aims 
for future research, which fall outside the scope of the current paper. The 
focus here is on arguing for the important role of priors in a probabilistic 
explication of the “best explanation”. We will now turn towards a third 
example for their importance, this time from real scientific practice. 
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3. The role of priors in scientific practice:  
the case of Planet Nine 

 In January 2016, two Caltech astronomers – Konstantin Batygin and 
Michael Brown – inferred the existence of a still unobserved planet in the 
outer Solar System (cf. Batygin & Brown 2016). This conjecture was made 
in order to provide the best explanation of certain peculiarities in the oth-
erwise stable orbits of a set of trans-Neptunian objects. It was observed that 
six objects in the scattered disk of the Kuiper Belt (Kuiper Belt Objects or 
KBOs), which had perihelia greater than the orbit of Neptune, and semi-
major axes greater than 150 AU (𝑎𝑎 > 150 AU), exhibited a strange clus-
tering of their arguments of perihelion (𝜔𝜔~0). In other words, the perihe-
lion of every one of these objects lied on the ecliptic, and their ascending 
nodes coincided with their perihelia, i.e. they all shared the same orbital 
direction – from south to north. Batygin and Brown calculated that orbits 
with 𝑎𝑎 > 50 AU, clustered this tight, occur only 0.007% of the time, which 
means a probability of only 0.00007 that the clustering is due to chance. 
They stated that, considering the age of our Solar System, such groupings 
are expected to randomize, unless held together by some physical mecha-
nism. 
 At that point in 2016, the above peculiarities in the six KBOs’ orbits 
have already been noted, and there were three contending explanatory hy-
potheses. The first one was proposed by Trujillo & Sheppard (2014). They 
concluded that the observed perihelia, which librated around 𝜔𝜔 = 0, might 
be held by a massive body on an outer orbit, about five times the mass of 
Earth. The second explanatory hypothesis was that the observed phenom-
enon was due to a self-gravitational instability of the scattered disk popu-
lation of the Kuiper Belt (see Madigan & McCourt 2015). The third one 
was Batygin and Brown’s own model, predicting the existence of an unob-
served planed. Batygin and Brown also systematically criticized the other 
two explanations. 
 As for the first one, the mechanism employed to explain the data in 
Trujillo & Sheppard (2014) had certain assumptions that would require the 
existence of several massive bodies, on orbits exactly tailored in order to 
explain the peculiarities in the orbits of the six KBOs. Furthermore, the 
same mechanism could not explain by itself why we observe objects clus-
tered at 𝜔𝜔~0, but there is no such observed clustering in 𝜔𝜔~180 (see 
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Batygin & Brown 2016). This explanation required the assumption that our 
Solar System had a strong stellar encounter in the past – an assumption that 
does not fit with the rest of our knowledge about the Solar System. All of 
these assumptions reduce the quality of Trujillo & Shepard’s (2014) expla-
nation of the KBOs’ orbits, making it more ad hoc. 
 As for the second explanation by Madigan and McCourt (2015), which 
employed a so called “inclination instability”, it assumed the scattered disk 
of the Kuiper Belt was once much more massive than current estimations, 
and stayed that way for a prolonged period of time, or it could not have 
provided enough gravity for the proposed mechanism of instability. Not 
only do we lack sufficient evidence for such an assumption, but also it is 
highly unlikely for theoretical reasons. Most of the mass that the disk might 
have contained in the past was most probably ejected from the Solar Sys-
tem due to interactions with the gas and ice giants. As Batygin & Brown 
(2016) noted, such interactions usually end up in hyperbolic trajectories for 
the less massive objects. 
 The best available explanation of the clustering of the six KBOs is that 
there is a massive body of about or above ten Earth masses, with a semi-
major axis 𝑎𝑎~700 AU and an estimated perihelion of about 200 AU, and 
an aphelion of about 1200 AU, which has eluded observation so far 
(Batygin & Brown 2016). It is speculated that this “perturber” of the orbits 
of the KBOs would likely be an ice giant, formed by an ejected giant planet 
core during the early phases of development of our Solar System. It prob-
ably has an orbital period in the range of 10 to 20 thousand years, and most 
of the time it is too far from Earth to be observed without very high-reso-
lution equipment, which would explain why it has not yet been discovered. 
If its existence is confirmed by observation, the planet will receive an offi-
cial name, but in the meantime, it has been called “Planet Nine”. Batygin 
& Brown (2016) point out that their explanation of the clustering of the six 
KBOs by the existence of Planet Nine also has implications about other 
features of the Kuiper Belt, which not only increase the scope of their ex-
planation, but also provide “a direct avenue for falsification of our hypoth-
esis” (Batygin & Brown 2016, 2). 
 In summary, we have three competing explanatory hypotheses, all of 
which entail the evidence, i.e., the observed clustering of KBOs. These 
are: Trujillo & Shepherd’s (2014) hypothesis, whose model requires the 
existence of several undiscovered massive bodies; Madigan & McCourt’s 
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(2015) hypothesis, which presupposes that the scattered disk of the Kui-
per Belt was much more massive and for a longer period of time, than 
current estimations indicate; and Batygin & Brown’s (2016) hypothesis, 
which presupposes the existence of Planet Nine. When interpreting IBE 
probabilistically, if we explicate the “best explanation” through any of 
the measures of EP sensitive only to the likelihoods, we would be forced 
to the conclusion that the above three hypotheses are equally good expla-
nations of the observed evidence. This conclusion, however, will go 
against the expert opinion of those astrophysicists who believe that 
Batygin and Brown’s hypothesis is the best available explanation (e.g. 
see opinions by Rodney Gomes, quoted in Lovett 2012, and by Ales-
sandro Morbidelli, quoted in Achenbach & Feltman 2016). If we include 
in our explication of the “best explanation” the differences in prior prob-
abilities of the competing hypotheses, then this controversy is resolved. 
Trujillo and Shepherd’s hypothesis requires the existence of several mas-
sive bodies, whereas Batygin and Brown’s hypothesis requires just one. 
According to the rules of classical probability, the probability for the ex-
istence of a single massive body would always be higher than the com-
bined probabilities for the existence of several massive bodies. Madigan 
and McCourt’s hypothesis requires that the Kuiper Belt was once much 
more massive, and for a longer period, than current estimations indicate. 
Furthermore, it is unlikely for theoretical reasons – most of that mass 
would have been quickly ejected out of the Solar System due to planetary 
encounters. Ceteris paribus, a hypothesis, which is not in agreement with 
current estimations, and is unlikely from a theoretical point of view on 
top of that, cannot receive a higher prior than a hypothesis that does not 
run into such problems. Based on these considerations, Batygin and 
Brown’s hypothesis seems to have the highest prior probability of the 
three competing explanations thus far. If we include that consideration in 
our decision about which one of them is the best explanation of the evi-
dence, we would reach a conclusion in accordance with the opinions of 
the experts. In other words, if our decision about the “best explanation” 
takes the prior probabilities of the assessed hypotheses in consideration, 
then it could adequately account for scientific cases, such as the one with 
Planet Nine. 
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4. A method for exploring the conditions  
of IBE – BCT compatibility 

 Another advantage of the described probabilistic explication of “best 
explanation” is that it makes investigating the conditions under which IBE 
and BCT are compatible relatively straightforward.4 As was already men-
tioned in the Introduction, the problem of IBE – BCT compatibility de-
pends on the particular explication of IBE and the particular Bayesian 
model of confirmation we want to compare. Furthermore, an IBE explica-
tion and a Bayesian model may turn out to be compatible only if certain 
conditions hold. How do we know which conditions should hold? We may 
find that out through a method of comparing inequalities, and we will con-
sider an example demonstrating how the method works. 
 For the sake of argument, let us take as a probabilistic explication of 
“best explanation” the following simple measure of EP: 

 (1)  𝐸𝐸𝐸𝐸(𝐸𝐸, 𝐻𝐻) = 𝑃𝑃(𝐸𝐸|𝐻𝐻) × 𝑃𝑃(𝐻𝐻) 

 In other words, let us assume that the best explanation, out of a set of 
competing explanatory hypotheses, is the one that has the highest value of 
𝐸𝐸𝐸𝐸. We interpret IBE to mean that this hypothesis is also the most con-
firmed one. 
 This specific measure of EP was chosen because it cannot have values 
above 1 or below 0, which would be hard to interpret and would violate 
the axioms of classical probability. It also accounts for prior probabilities, 
as has already been argued. Nevertheless, it is introduced for the purposes 
of this example and should not be taken as a proposal to measure EP in real 
life. 
 Using the above measure, we will define the EP of two competing ex-
planatory hypotheses 𝐻𝐻1 and 𝐻𝐻2, both of which explain some empirical 
evidence 𝐸𝐸: 

 (2)  𝐸𝐸𝐸𝐸(𝐸𝐸, 𝐻𝐻1) = 𝑃𝑃(𝐸𝐸|𝐻𝐻1) × 𝑃𝑃(𝐻𝐻1) 
 (3)  𝐸𝐸𝐸𝐸(𝐸𝐸, 𝐻𝐻2) = 𝑃𝑃(𝐸𝐸|𝐻𝐻2) × 𝑃𝑃(𝐻𝐻2) 
                                                           
4  By “compatibility”, I will understand the ability to provide equal results, when ap-
plied to the same case. Although there could be other meanings of the term, these will 
not be addressed here. 
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 We would like to know under which conditions our interpretation of 
IBE may turn out to be compatible, in the sense of providing compatible 
results, with the measure of confirmation proposed by Eells (1982) and de-
fended by Jeffrey (1992): 

 (4)  𝐶𝐶(𝐸𝐸, 𝐻𝐻) = 𝑃𝑃(𝐻𝐻|𝐸𝐸) − 𝑃𝑃(𝐻𝐻) 

 In other words, according to Eells and Jeffrey, confirmation is an in-
creasing function of the difference between posterior and prior probabili-
ties. We will define the measures of confirmation of our two hypotheses 
as: 

 (5)  𝐶𝐶(𝐸𝐸, 𝐻𝐻1) = 𝑃𝑃(𝐻𝐻1|𝐸𝐸) − 𝑃𝑃(𝐻𝐻1) 
 (6)  𝐶𝐶(𝐸𝐸, 𝐻𝐻2) = 𝑃𝑃(𝐻𝐻2|𝐸𝐸) − 𝑃𝑃(𝐻𝐻2) 

 We start comparing the two methods by exploring the scenario in which 
𝐻𝐻1 is better confirmed by 𝐸𝐸 than 𝐻𝐻2. According to our interpretation of 
IBE, 𝐻𝐻1 is better confirmed than 𝐻𝐻2 if the following condition is satisfied: 

 (7)  𝐸𝐸𝐸𝐸(𝐸𝐸, 𝐻𝐻1) > 𝐸𝐸𝐸𝐸(𝐸𝐸, 𝐻𝐻2) 
 (8)  𝑃𝑃(𝐸𝐸|𝐻𝐻1) × 𝑃𝑃(𝐻𝐻1) > 𝑃𝑃(𝐸𝐸|𝐻𝐻2) × 𝑃𝑃(𝐻𝐻2) 

 And according to our chosen Bayesian measure of confirmation, 𝐻𝐻1 is 
better confirmed than 𝐻𝐻2 if: 

 (9)  𝐶𝐶(𝐸𝐸, 𝐻𝐻1) > 𝐶𝐶(𝐸𝐸, 𝐻𝐻2) 
 (10) 𝑃𝑃(𝐻𝐻1|𝐸𝐸) − 𝑃𝑃(𝐻𝐻1) > 𝑃𝑃(𝐻𝐻2|𝐸𝐸) − 𝑃𝑃(𝐻𝐻2) 

 We may immediately notice that, as both 𝐻𝐻1 and 𝐻𝐻2 explain the same 
evidence, we may transform (8) by dividing both sides of the inequality by 
𝑃𝑃(𝐸𝐸), assuming 𝑃𝑃(𝐸𝐸) > 0: 

 (11) 
𝑃𝑃(𝐸𝐸|𝐻𝐻1)×𝑃𝑃(𝐻𝐻1)

𝑃𝑃(𝐸𝐸)
 > 𝑃𝑃(𝐸𝐸|𝐻𝐻1)×𝑃𝑃(𝐻𝐻1)

𝑃𝑃(𝐸𝐸)
  

 (12) 𝑃𝑃(𝐻𝐻1|𝐸𝐸) > 𝑃𝑃(𝐻𝐻2|𝐸𝐸) 

We may transform (10) into: 

 (13) 𝑃𝑃(𝐻𝐻1|𝐸𝐸) − 𝑃𝑃(𝐻𝐻2|𝐸𝐸) > 𝑃𝑃(𝐻𝐻1) − 𝑃𝑃(𝐻𝐻2) 



522  A N T O N  D O N C H E V  

After which we may transform (12) into: 

 (14) 𝑃𝑃(𝐻𝐻1|𝐸𝐸) − 𝑃𝑃(𝐻𝐻2|𝐸𝐸) > 0 

Now, if we assume that: 

 (15) 𝑃𝑃(𝐻𝐻1) − 𝑃𝑃(𝐻𝐻2) ≥ 0 

From (13) and (15) we can infer: 

 (16) 𝑃𝑃(𝐻𝐻1|𝐸𝐸) − 𝑃𝑃(𝐻𝐻2|𝐸𝐸) > 0 

 As (14) and (16) are obviously equivalent, we may argue that (13) and 
(14) are also equivalent, given that (15) is satisfied. In other words, both 
IBE and BCT would conclude that 𝐻𝐻1 is better confirmed by 𝐸𝐸 than 𝐻𝐻2 if 
𝑃𝑃(𝐻𝐻1) ≥ 𝑃𝑃(𝐻𝐻2), and that when IBE and BCT lead to different predictions, 
this is due to a violation of condition (15). 
 Now that we know the above condition, one way to proceed would be 
to rationalize why it should hold. However, if the result is deemed indefen-
sible or strongly counterintuitive, another way to proceed is to seek a dif-
ferent measure of explanatory power, or a different Bayesian measure of 
confirmation, and employ the method again to find if they are compatible 
and under what conditions.  
 The bottom line is that investigating the conditions of IBE – BCT com-
patibility, by employing the method presented above, lends itself naturally 
to an interpretation of IBE, which uses a probabilistic explication of “best 
explanation” (as outlined in section 2). This is an advantage of the proba-
bilistic interpretation of IBE over classical IBE, as it allows us to explore 
the issue of IBE – BCT compatibility in much higher detail (i.e., on a 
model-by-model basis), rather than just announcing them completely com-
patible or incompatible. 

5. Conclusions 

 A probabilistic interpretation of IBE should aim at providing an ade-
quate probabilistic explication of the term “best explanation” – in this way 
it would be able to complete IBE with a formal mechanism for finding the 
best out of a set of explanations. An adequate probabilistic explication of 
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the “best explanation” should be a measure of explanatory power influ-
enced by the prior probabilities of the explanatory hypotheses. There are 
cases, which show that priors have a key role in decisions about the best 
explanation, and that measures, which are sensitive only to the likelihoods 
of the assessed hypotheses, would lead to counterintuitive conclusions, 
when applied to these cases. 
 Such a probabilistic interpretation of IBE has three distinct advantages. 
The first one is the above-mentioned formal mechanism for finding the best 
explanation, whereas classical IBE lacks such a mechanism. The second 
advantage is that it can account for cases in science as the one with Planet 
Nine. Interpretations of IBE, which use probabilistic measures of explana-
tory power that are not influenced by priors, fail to account for such cases. 
They would consider all competing hypotheses as equally good explana-
tions of the evidence, against the experts’ better judgment, whereas a pri-
ors-sensitive measure would be able to explain why one of the hypotheses 
is considered a superior explanation. 
 The third advantage is that such a probabilistic interpretation of IBE 
allows for investigation of the particular conditions, under which specific 
explications of IBE and specific Bayesian models of confirmation give 
compatible results. The issue of IBE – BCT compatibility is more nuanced 
than outright compatibility or incompatibility: there are different explica-
tions of IBE and different models of BCT. Some of these may turn out to 
be compatible, but only under certain conditions. In order to resolve the 
issue, these conditions will have to be explored in future research, which 
may be done in a straightforward way by employing the method presented 
in the previous part. 
 There are also several other topics, which remain open for further re-
search. The main one is to provide a probabilistic measure of EP that ac-
counts for priors and test it against the already proposed measures of EP. 
There is also a decision to be made whether competing hypotheses should 
have EP above a certain threshold, in order to be considered “good enough” 
in Lipton’s term, and avoid van Fraassen’s (1989) “argument from a bad 
lot”. Last but not least, introducing priors in EP may give rise to objections 
against making EP “subjective”, similar to the objections against BCT. 
These objections will have to be addressed, and one way to do it is to argue 
that priors may be formed by considerations about simplicity, unification, 
scope and other explanatory virtues. 
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