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Learning Conditional and Causal Information  
by Jeffrey Imaging  

on Stalnaker Conditionals 

MARIO GÜNTHER1 

ABSTRACT: We show that the learning of (uncertain) conditional and/or causal infor-
mation may be modelled by (Jeffrey) imaging on Stalnaker conditionals. We adapt 
the method of learning uncertain conditional information proposed in Günther (2017) 
to a method of learning uncertain causal information. The idea behind the adaptation 
parallels Lewis (1973c)’s analysis of causal dependence. The combination of the 
methods provides a unified account of learning conditional and causal information 
that manages to clearly distinguish between conditional, causal and conjunctive in-
formation. Moreover, our framework seems to be the first general solution that gen-
erates the correct predictions for Douven (2012)’s benchmark examples and the Judy 
Benjamin Problem. 
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1. Introduction 

 “How do we learn conditional information?” Igor Douven et al. present 
this question for consideration in a series of papers (cf. Douven & Dietz 
2011; Douven & Romeijn 2011; Douven 2012; Pfeifer & Douven 2014, 
especially section 6). Douven (2012) contains a survey of the available ac-
counts that model the learning of conditional information. The survey 
comes to the conclusion that a general account of probabilistic belief up-
dating by learning (uncertain) conditional and causal information is still to 
be formulated. Pfeifer & Douven (2014) analyses the state of the art even 
more pessimistically by writing that “no one seems to have an idea of what 
an even moderately general rule of updating on conditionals might look 
like,” even if we restrict the scope of the account to indicative conditionals 
(Pfeifer & Douven 2014, 213). We aim to provide such a general account 
of updating that unifies the learning of (uncertain) conditional and causal 
information. 
 In Günther (2017), we proposed a method of learning conditional infor-
mation. We have shown that the predictions of the proposed method align 
with the intuitions in Douven (2012)’s benchmark examples and can gen-
erate predictions for the Judy Benjamin Problem. In this paper, we adapt 
the method of learning conditional information to a method of learning 
causal information. The adapted method allows us to causally conceive of 
the information conveyed by the conditionals uttered in Douven’s exam-
ples and the Judy Benjamin Problem. 
 It may come as a surprise that we propose an account of learning that 
involves (Jeffrey) imaging. After all, the standard view on learning that α 
is Bayesian updating on α, while David Lewis’s imaging on α is widely 
conceived of as modeling the supposition of α. But learning a conditional 
may – according to the suppositional view on conditionals – be interpreted 
as learning what is true under a supposition (about which we may be un-
certain). In particular, learning the conditional “If α, then γ” is thus equiv-
alent to learning the conditional information that γ is the case under the 
supposition that α is the case. 
 Douven aims to provide an account of learning conditional information 
that is an empirically adequate account of human reasoning. Douven & 
Verbrugge (2010) submitted the thesis whether the acceptability of an in-
dicative conditional ‘goes by’ the conditional probability of its consequent 
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given the antecedent to empirical testing, and claim that the experiments 
speak against the thesis.2 Their results indicate that conditional probabili-
ties do not correspond to probabilities of conditionals, which was proved 
by Lewis (1976), if conditionals are understood as Stalnaker conditionals. 
Those formal and empirical results obviously provide a severe challenge 
for Bayesian analyses of learning conditionals, where conditional proba-
bilities usually take center stage. 
 Moreover, Zhao et al. (2012) obtained empirical results that indicate a 
fundamental difference between supposing and learning. In particular, sup-
posing a conditional’s antecedent α seems to have less impact on the cred-
ibility of the consequent γ than learning that α is true. We will provide a 
framework that allows us both, to distinguish between the learning of ‘fac-
tual’ and conditional information and to generate empirically testable pre-
dictions. 
 In Section 2, we introduce Douven’s desideratum for accounts of learn-
ing (uncertain) conditional information. His own proposal is based on the 
explanatory status of the antecedent. In Section 2.1, we sketch his argu-
mentation against the method of imaging on the Stalnaker conditional as 
an account of learning conditional information. The reason for Douven’s 
dismissal of the method is that the rationality constraints of Stalnaker mod-
els are not sufficient to single out a model, which may count as a represen-
tation of a belief state. 
 In Section 3, we review the method of learning (uncertain) conditional 
information proposed in Günther (2017), where we showed that Douven’s 
dismissal is unjustified. We met Douven’s challenge for possible worlds 
models by imposing two additional constraints: interpreting the meaning 
of a Stalnaker conditional in a minimally informative way and supplement-
ing the analysis by a default assumption. Moreover, we generalised Lewis’s 
imaging method in order to account for uncertain information as well. 
 In Section 4, we adapt the method of learning conditional information 
to a method of learning causal information. The adaptation is inspired by 
Lewis’s notion of causal dependence and replaces the default assumption 
by the assumption that the antecedent makes a difference. In Section 4.1, 
we apply our adapted method of learning causal information to Douven’s 

                                                           
2  The ‘goes by’ is Lewis’s formulation that may be found in Lewis (1976, 297). 
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examples and the Judy Benjamin Problem. In Section 5, we formally im-
plement Douven’s idea concerning the explanatory status of the antecedent 
within our framework. 

2. Douven’s account of learning conditional information  
via the explanatory status of the antecedent 

 Igor Douven propounds a broadly Bayesian model of learning condi-
tional information. As the standard Bayesian view of learning, Douven’s 
account assumes that learning the unnested indicative conditional “If α, 
then γ” implies that the posterior degree of belief for γ given α is set to 
approximately 1, i. e. P*(γ | α) ≈ 1. In contrast to standard Bayesian epis-
temology, explanatory considerations play a major role in his model of up-
dating on conditionals. 
 Douven proposes a desideratum for any account of learning conditional 
information, viz. a criterion that determines whether an agent raises, low-
ers, or leaves unchanged her degree of belief P(α) for the antecedent upon 
learning a conditional. 
 He even writes that we “should be [...] dissatisfied with an account of 
updating on conditionals that failed to explain [...] basic and compelling 
intuitions about such updating, such as, in our examples” (Douven 2012, 
3). Douven’s methodology consists in searching for an updating model that 
accounts for our intuitions with respect to three examples, the Sundowners 
Example, the Ski Trip Example and the Driving Test Example. The three 
examples represent the classes of scenarios, in which P(α) should intui-
tively remain unchanged, be increased and decreased, respectively. He dis-
misses any method of learning conditional information that cannot account 
for all of the three examples. He emphasises that no single account of learn-
ing uncertain conditional and/or causal information is capable of solving 
all of his examples. Taking the examples as benchmark, he also dismisses 
the Stalnaker conditional as a tool to model the learning of conditional in-
formation. 
 The core hypothesis of Douven’s account is that the change in explana-
tory quality or ‘explanatory status’ of the antecedent α during learning the 
information results in a change of the degree of belief for α. If the explan-
atory status of α goes up, that is α explains γ well, then the degree of belief 
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after learning the conditional increases, i. e. P*(α) > P(α); if the explana-
tory status of α goes down, P*(α) < P(α); if the explanatory status remains 
the same, a variant of Jeffrey conditioning is applied that has the property 
that P*(α) = P(α). Following Richard Bradley, Douven calls this Jeffrey 
conditioning over a restricted partition ‘Adams conditioning on P*(γ | α) ≈ 
1’.3 
 Douven and Romeijn proposed a solution to the Judy Benjamin Prob-
lem. The problem indicates that the revision method that minimises the 
Kullback-Leibler divergence leads to counterintuitive results for learning 
uncertain conditional information. Their solution uses the variant of Jeffrey 
conditioning mentioned above. However, their proposed method fails to 
account for examples where the probability of the antecedent is supposed 
to change, since it has the invariance property that P*(α) = P(α), for all α, 
and thus disqualifies as a general account of learning conditional infor-
mation (cf. Douven & Romeijn 2011, 648-655; Douven 2012, 9-11). 

2.1. Douven’s dismissal of the Stalnaker conditional 

 Douven claims that Stalnaker conditionals are not suited to model the 
learning of conditional information. He argues for this claim by pointing 
out that a learning method based on the Stalnaker conditional “makes no 
predictions at all about any of our examples” (Douven 2012, 7). The cited 
reason is that we would not be able to exclude certain Stalnaker models as 
rational representation of a belief state. 
 Douven provides three possible worlds models for his point. Each 
model consists of four worlds such that all logical possibilities of two bi-
nary variables are covered. He observes that imaging on “If α, then β” in-
terpreted as a Stalnaker conditional has different effects: in model I, the 
probability of the antecedent α, i. e. P(α) decreases; in model II, P(α) re-
mains unchanged; and in model III P(α) increases. According to Douven 
this flexibility of the class of possible world models is a problem rather 
than an advantage, since there would be no rationality constraints to rule 
out certain models as rational representations of a belief state. 

                                                           
3  The partition is restricted according to the odds for the consequent of the learned 
conditional. For details, see Bradley (2005, 351-352); and Douven & Romeijn (2011, 
650-653). 
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 Consider a scenario of the class, where the antecedent remains un-
changed (e.g. the Sundowners Example). The problem is, so Douven ar-
gues, that there are no criteria to exclude models I and III as rational rep-
resentations of a belief state, in which P(α) should not change. In Douven’s 
words: 

In fact, to the best of my knowledge, nothing said by Stalnaker (or Lewis, 
or anyone else working on possible worlds semantics) implies that, sup-
posing imaging is the update rule to go with Stalnaker’s account, models 
I and III [...] could not represent the belief state of a rational person; [...] 
In short, interpreting “If A, B” as the Stalnaker conditional and updating 
on it [...] by means of imaging offers no guarantee that our intuitions are 
respected about what should happen – or rather not happen – after the 
update [...]. Naturally, it cannot be excluded that some of these models – 
and perhaps indeed all on which [...] [the degree of belief in the anteced-
ent] changes as an effect of learning [the conditional] – are to be ruled out 
on the basis of rationality constraints that I am presently overlooking, per-
haps ones still to be uncovered, or at least still to be related to possible 
worlds semantics as a tool for modelling epistemic states. It is left as a 
challenge to those attracted to the view considered here to point out such 
additional constraints. (Douven 2012, 8-9) 

 In Günther (2017), we met the challenge Douven mentions in the quote. 
We discovered two constraints that singled out Stalnaker models that plau-
sibly represent the belief states in Douven’s benchmark examples. Impos-
ing the two additional constraints amounts to interpreting the meaning of a 
Stalnaker conditional in a minimally informative way and supplementing 
the analysis by a default assumption. 

3. Review of the Method of Learning Conditional Information  
by Jeffrey Imaging on Stalnaker Conditionals 

 Günther (2017) puts forward a method of learning conditional infor-
mation by Jeffrey imaging on Stalnaker conditionals. The learning method 
may be summarised as follows. (i) We model an agent’s belief state as a 
Stalnaker model. (ii) The agent learns conditional information by (ii).(a) 
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interpreting the received conditional information as a Stalnaker condi-
tional; (ii).(b) constraining the similarity order by the meaning of the Stal-
naker conditional in a minimally informative way and respecting the de-
fault assumption; and (ii).(c) updating her degrees of belief by Jeffrey im-
aging on this Stalnaker conditional (together with further contextual infor-
mation, if available). 
 We outline the method of learning conditional information by present-
ing its constituents, i. e. the semantics of the Stalnaker conditional, Jeffrey 
imaging and the meaning of ‘minimally informative’. Afterwards, we put 
the constituents together. 

3.1. The Stalnaker conditional 

 The idea behind a Stalnaker conditional may be expressed as follows: a 
Stalnaker conditional α > γ is true at a world w iff γ is true in the most 
similar possible world wʹ to w, in which α is true (cf. Stalnaker 1975).4 We 
denote the set of possible worlds that satisfies a formula α by [α]. Thereby, 
we identify the set [α] with the proposition expressed by α. In symbols,  
[α] = {w ∈ W | w(α) = 1}, where each w of the set of worlds under consid-
eration W may be thought of as a Boolean evaluation. 
 A Stalnaker conditional is evaluated with respect to a Stalnaker model, 
i. e. a model of possible worlds where each world w is equipped with a total 
order such that w is the unique center of the respective order and, for non-
contradictions α, it is guaranteed that there exists a unique most similar 
world min≤w [α] from w that satisfies α. The accessibility relation of a Stal-
naker model is reflexive and connective. 
 Let us state more precisely the meaning of a Stalnaker conditional using 
the notations just introduced. “If α, then γ” denotes according to Stal-
naker’s proposal the set of worlds (or equivalently the proposition) contain-
ing each world whose most similar α-world is a world that satisfies γ. In 

                                                           
4  Note that Stalnaker’s theory of conditionals aims to account for both indicative and 
counterfactual conditionals. We set the complicated issue of this distinction aside in this 
paper. However, we want to emphasise that Douven’s examples and the Judy Benjamin 
Problem only involve indicative conditionals. 
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symbols, [α > γ] = {w | w ╞ α > γ} = {w | min≤w [α] = Ø or min≤w [α] ╞ 
γ}.5 
 Finally, note that any Stalnaker model validates the principle called 
‘Conditional Excluded Middle’ according to which (α > γ) ∨ (α > ¬γ). The 
reason for the validity of Conditional Excluded Middle is that, for any  
w ∈ W, the single most similar α-world min≤w [α] is either a γ-world, or 
else a ¬γ-world. This principle will come in handy when modeling the 
learning of uncertain information. 
 In the next section, we introduce Lewis’s imaging method, which we 
will generalise in the subsequent section. 

3.2. Lewis’s imagining 

 David Lewis developed a probabilistic updating method called ‘imag-
ing’ (cf. Lewis 1976). We introduce a notational shortcut: for each world w 
and each (possible) antecedens α, wα = min≤w [α] be the most similar world 
of w such that wα(α) = 1. Invoking the shortcut, we can then specify the 
truth conditions for Stalnaker’s conditional operator > as follows: 

 (1)  w(α > γ) = wα(γ), if α is possible.6 

 Definition 1. Probability Space over Possible Worlds 
We call 〈W, ℘(W), P〉 a probability space over a finite set of possible 
worlds W iff 

  (i) ℘(W) is the set of all subsets of W, 
  (ii) and P : ℘(W) ↦ [0, 1] is a probability measure, i.e.  
   (a) P(W) = 1, P(Ø) = 0, and 
   (b) for all X, Y ⊆ W such that X ∩ Y = Ø, P(X ∪ Y) = P(X) + P(Y). 

 As before, we conceive of the elements of ℘(W) as propositions. We 
define, for each α, P(α) = P([α]). We see that W corresponds to an arbitrary 
tautology denoted by ⊤ and Ø to an arbitrary contradiction denoted by ⊥. 

                                                           
5  See Günther (2017) for a more thorough presentation of Stalnaker models. See Stal-
naker & Thomason (1970) for Stalnaker and Thomason’s original presentation of the 
Stalnaker semantics. 
6  We assume here that there are only finitely many worlds. Note also that if α is - 
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Definition 1 allows us to understand a probability measure P as a probabil-
ity distribution over worlds such that each w is assigned a probability 
P(w) > 0, and ∑ 𝑃𝑃(𝑤𝑤) = 1𝑤𝑤 . We may determine the probability of a for-
mula α by summing up the probabilities of the worlds at which the formula 
is true.7 

𝑃𝑃(𝛼𝛼) = � 𝑃𝑃(𝑤𝑤) ∙ 𝑤𝑤(𝛼𝛼)
𝑤𝑤

 

Now, we are in a position to define Lewis’s updating method of imaging. 

 Definition 2. Imaging (Lewis 1976, 310) 
 For each probability function P, and each possible formula α, there is a 
probability function Pα such that, for each world wʹ, we have: 

𝑃𝑃𝛼𝛼(𝑤𝑤′) = � 𝑃𝑃(𝑤𝑤) ∙ �
1 if 𝑤𝑤𝛼𝛼 = 𝑤𝑤′
0 otherwise

�
𝑤𝑤

 

We say that we obtain Pα by imaging P on α, and call Pα the image of P on 
α. 
 Intuitively, imaging transfers the probability of each world w to the 
most similar α-world wα. Importantly, the probabilities are transferred, but 
in total no probability mass is additionally produced and no probability 
mass is lost. In formal terms, we have always ∑ 𝑃𝑃α(𝑤𝑤′) = 1𝑤𝑤′ . Any α-world 
wʹ keeps at least its original probability mass (since then wα = wʹ), and is 
possibly transferred additional probability shares of ¬α-worlds w iff  
min≤w [α] = wʹ. In other words, each α-world wʹ receives as its updated 
probability mass its previous probability mass plus the previous probability 
shares that were assigned to ¬α-worlds w such that min≤w [α] = wʹ. In this 
way, the method of imaging distributes the whole probability onto the  
α-worlds such that Pα(α) = ∑ 𝑃𝑃(𝑤𝑤(𝛼𝛼)) = 1𝑤𝑤(𝛼𝛼)=1 , and each share remains 
‘as close as possible’ at the world at which it has previously been located. 
For an illustration, see Figure 1. 

                                                           
7  We assume here that each world is distinguishable from any other world, i. e. for 
two arbitrary worlds, there is always a formula such that the formula is true in one of 
the worlds, but false in the other. In other words, we consider no copies of worlds. 

(2) 

(3) 
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 Lewis proved the following theorem, which relates the semantics of the 
Stalnaker conditional and the method of imaging on its antecedent. 

 Theorem 1. (Lewis 1976, 311) 
The probability of a Stalnaker conditional equals the probability of the 
consequent after imaging on the antecedent, i. e. P(α > γ) = Pα(γ), if α 
is possible.  

 Note that α in Theorem 1 may itself be of conditional form β > δ for 
any formulas β, δ. 
 
 

 
 

Figure 1: A set of possible worlds. The area delineated by the elliptical 
line represents the proposition or set of worlds [α] = {w3, w4, w6, w8}. 
The thick arrows represent the transfer of probability shares from the 
respective [¬α]-worlds to their most similar [α]-world. Similarity is 
graphically represented by topological distance between the worlds 
such that w3, for instance, is the most similar or ‘closest’ [α]-world to 
w2. 
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3.3. Jeffrey imagining 

 The case of learning uncertain conditional information, i. e. P(α > γ) = k 
for k ∈ [0, 1] but unequal to 0 or 1, requires to generalise Lewis’s imaging 
method of Definition 2. In analogy to Jeffrey conditionalisation, we call 
the generalised method ‘Jeffrey’ imaging. Jeffrey imaging is based on 
Lewis’s imaging and the fact that in a Stalnaker model the principle of Con-
ditional Excluded Middle prescribes that ¬(α > γ) is equivalent to α > ¬γ. 
We know, for all w ∈ W, presupposed α > γ is possible, both (I) that 
∑ 𝑃𝑃𝛼𝛼 > 𝛾𝛾 (𝑤𝑤)𝑤𝑤  sums up to 1 and (II) that ∑ 𝑃𝑃𝛼𝛼 > ¬𝛾𝛾 (𝑤𝑤)𝑤𝑤  sums up to 1. The 
idea is that if we form a weighted sum over the terms of (I) and (II) with 
some parameter k ∈ [0, 1], then we obtain again a sum of terms 𝑃𝑃𝑘𝑘

𝛼𝛼 > 𝛾𝛾 (w) 
such that ∑ 𝑃𝑃𝑘𝑘

𝛼𝛼 > 𝛾𝛾 (𝑤𝑤)𝑤𝑤 = 1. Note, however, that we present the more gen-
eral case 𝑃𝑃𝑘𝑘

𝛼𝛼 (𝑤𝑤) in the definition below. 

 Definition 3. Jeffrey Imaging 
For each probability function P, each possible formula α (possibly of 
conditional form β > δ), and some parameter k ∈ [0, 1], there is a prob-
ability function 𝑃𝑃𝑘𝑘

𝛼𝛼  such that for each world wʹ and the two similarity 
orderings centred on wα and w¬α, we have: 

𝑃𝑃𝑘𝑘
𝛼𝛼(𝑤𝑤′) = � �𝑃𝑃(𝑤𝑤) ∙ �

𝑘𝑘  if 𝑤𝑤𝛼𝛼 = 𝑤𝑤′

0  otherwise� + 𝑃𝑃(𝑤𝑤) ∙ �
1 − 𝑘𝑘  if 𝑤𝑤¬𝛼𝛼 = 𝑤𝑤′

0             otherwise��
𝑤𝑤

 

 We say that we obtain 𝑃𝑃𝑘𝑘
𝛼𝛼  by Jeffrey imaging P on α, and call 𝑃𝑃𝑘𝑘

𝛼𝛼  the 
Jeffrey image of P on α. Note that in the case where k = 1, Jeffrey imaging 
reduces to Lewis’s imaging. 

 Theorem 2. Properties of Jeffrey Imaging 

 (i)  ∑ 𝑃𝑃𝑘𝑘
𝛼𝛼(𝑤𝑤′) = 1𝑤𝑤′  

 (ii)  𝑃𝑃𝑘𝑘
𝛼𝛼(𝛼𝛼) = 𝑘𝑘 

 (iii) 𝑃𝑃𝑘𝑘
𝛼𝛼(¬𝛼𝛼) = (1 − 𝑘𝑘) 

 (iv) 𝑃𝑃𝑘𝑘
𝛼𝛼(𝛾𝛾) = 𝑘𝑘 · 𝑃𝑃(𝛼𝛼 >  𝛾𝛾) 8 

                                                           
8  The proofs of the properties can be found in Günther (2017). 

(4) 
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We see that in total the revision method of Jeffrey imaging does neither 
produce additional probability shares, nor destroy any probability shares. 
In contrast to Lewis’s imaging, Jeffrey imaging does not distribute the 
whole probabilistic mass onto the α-worlds, but only a part thereof that is 
determined by the parameter k. 
 In particular, as compared to Lewis’s imaging, Jeffrey imaging may be 
understood as implementing a more moderate or balanced movement of 
probabilistic mass between α- and ¬α-worlds. For an illustration, see Fig-
ure 2. 

 
 

Figure 2: An illustration of the probability kinematics of Jeffrey imag-
ing. The Jeffrey image 𝑃𝑃𝑘𝑘

𝛼𝛼  is characterised by a ‘k-inertia’ of the prob-
abilistic mass from the respective α-worlds, and a ‘(1 − k)-inertia’ of the 
probabilistic mass from the respective ¬α-worlds. Each thick arrow rep-
resents the transfer of the probability share k· P(w) to the closest α-
world from w. Each thin arrow represents the transfer of the probability 
share (1 − k) · P(w) to the closest ¬α-world from w. 
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 It is easy to show that 𝑃𝑃𝑘𝑘
𝛼𝛼  is a probability function. In a possible worlds 

framework, such a proof basically amounts to showing that the probability 
shares of all the worlds sum up to 1 after Jeffrey imaging. Therefore, prop-
erty (i) of Theorem 2 provides minimal justification for applying Jeffrey 
imaging to probabilistic belief updating. 

3.4. Putting the constituents together 

 Now we outline the method of learning conditional information put for-
ward in Günther (2017). The method comprises three main steps: 

 (i)  We model an agent’s belief state as a Stalnaker model such that 
all and only those logical possibilities are represented as single 
worlds, which are relevant to the scenario under consideration. 
For instance, if only a single conditional “If α, then γ” is relevant 
and nothing else, then W contains exactly four elements as de-
picted in Figure 3.9 

 (ii)  An agent learns conditional information “If α, then γ” iff (a) the 
agent interprets the received conditional information as a Stal-
naker conditional α > γ; (b) changes the similarity order ≤ by the 
meaning of α > γ in a minimally informative way and respecting 
the default assumption; and (c) updates her degrees of belief by 
Jeffrey imaging on the minimally informative meaning of α > γ. 

 (iii) Finally, we check whether or not the result of Jeffrey imaging 
obtained in step (ii).(c) corresponds to the intuition associated 
with the respective example. 

 Step (ii) constitutes the core of the learning method and requires further 
clarification: 

 (a)  In the agent’s belief state, i.e. a Stalnaker model, the received 
information is interpreted. In the case of conditional information, 
the received information is interpreted as Stalnaker conditional. 
Hence, if the agent receives the information “If α, then γ”, she 
interprets the information as meaning that the most similar  

                                                           
9  In other words, we consider “small” models of possible worlds and do not allow for 
copies of worlds, i. e. worlds that satisfy the same formulas. 
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α-world (from the respective actual world) is a world that satis-
fies γ (presupposed α is possible). Technically, the interpretation 
(i.e. the meaning) of α > γ (relative to the Stalnaker model) is the 
proposition [α > γ] = {w ∈ W | min≤w [α] ∈ [γ]}, where w is the 
respective actual world. 

 (b)  The similarity order(s) is/are changed upon receiving conditional 
information. The proposition {w ∈ W | min≤w [α] ∈ [γ]} depends 
on the similarity order ≤. The learning method prescribes that ≤ 
is specified, or adjusted, such that from each world the most sim-
ilar α-world is a γ-world whenever possible. In other words, the 
method demands a maximally conservative, or equivalently min-
imally informative, interpretation of the received information. 
This amounts to specifying or adjusting the orders ≤w such that 
as many worlds as possible satisfy the received information. On 
the one hand, we can describe this interpretation as maximally 
conservative in the sense that no worlds are gratuitously ex-
cluded. On the other hand, we may think of possible worlds as 
information states. Then the exclusion of possible worlds corre-
sponds to a gain of information. If an agent interprets the re-
ceived information in a maximally conservative way, then as few 
as possible worlds or information states are excluded. In this 
sense, her gain of information is minimal.  
 The learning method assumes that the agent changes her sim-
ilarity order respecting a default assumption. This default as-
sumption states that the most similar α > γ-world from any ex-
cluded α > ¬γ-world is an α ∧ γ-world, if there is more than one 
candidate. Formally, the default assumption expresses that 
min≤w(α>¬γ)=1 [α > γ]╞ α ∧ γ, if min≤w(α>¬γ)=1 [α > γ] is underde-
termined.10 A justification for the default assumption is provided 
in Günther (2017).  

                                                           
10  Relying on the default assumption solves a well-known problem of underdetermi-
nation: it might well be that, for instance, in the Stalnaker model depicted in Figure 3 
w3 or w4 is the more similar α > γ-world to w2 than w1 is. However, we will see in the 
examples below that additional (contextual) information may sometimes fully deter-
mine the epistemic states under consideration such that we do not always need to rely 
on the default assumption. 
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 (c)  Jeffrey imaging is applied on the minimally informative meaning 
of the Stalnaker conditional α > γ. The application of Jeffrey im-
aging determines a probability distribution after learning the (un-
certain) conditional information. 

Figure 3: A four-worlds Stalnaker model for a case, in which the only 
received and relevant information is “If α, then γ”. The reflexive thin 
arrows illustrate that each world w is the most similar to itself under the 
respective similarity order ≤w. The thick arrows illustrate the change of 
the similarity order such that the received and interpreted information 
[α > γ] is minimally informative. Here, the minimally informative 
meaning of α > γ is [α > γ] = {w ∈ W | w╞ α > γ} = {w1, w3, w4}. Note 
that world w2 is its own most similar α-world, but does not satisfy γ, 
i.e. min≤w2 [α] ⊭ γ and thus min≤w2 [α > γ] ≠ w2. Relying on the default 
assumption of step (ii).(b), min≤w2 [α > γ] = w(α ∧ γ) = w1. In words, 
the method prescribes that w1 is the most similar α > γ-world to w2. This 
illustrates that the minimally informative meaning of [α > γ] implies 
that ¬γ is excluded under the supposition of α. Hence, imaging on the 
minimally informative meaning of α > γ ‘probabilistically excludes’ w2 
and the probability share of w2 will be fully transferred to w1. 



 L E A R N I N G  C O N D I T I O N A L  A N D  C A U S A L  I N F O R M A T I O N  …  471 

 The proposed learning method has the following property that allows 
us to distinguish conditional and conjunctive information. If there is no 
further contextual information available to the agent receiving information, 
then learning the conditional information α > γ is less informative than 
learning the information α ∧ γ. For, the proposition [α ∧ γ] is in the pro-
posed framework always a strict subset of the minimally informative prop-
osition [α > γ].  

4. An adaptation of the method to the learning  
of causal information 

 In Section 2, we have seen that Douven invokes explanatory consider-
ations in order to model the learning of conditional information. His ac-
count presupposes an explanatory reading of the learned conditional infor-
mation, which may be of the form “If α, then γ”. While we are skeptical 
about the presupposition that any conditional can or should be read as (a 
part of) an explanation or causal dependence, we admit that conditionals 
often figure in explanations. Hence, the method of learning conditional in-
formation proposed in Günther (2017) should be able to account for the 
learning of causal information conveyed by conditionals; otherwise, the 
proposed method suffers a major drawback. 
 In this section, we sketch how the proposed method may be adapted to 
a method of learning causal information. The adaptation is inspired by 
Lewis’s analysis of causal dependence in terms of counterfactuals. Douven 
claims that, in any account of explanation that relies on a Stalnaker model, 
“to explain” means to “provide causal information”, where “causal” refers 
to a Lewis-style analysis.11 

                                                           
11  Cf. Douven (2012, 8-9, especially footnote 7); and Lewis (1973c). Furthermore, 
Douven claims that Lewis’s and Stalnaker’s semantics for conditionals are “exactly the 
same” (Douven 2012, 8). However, there is a difference between Stalnaker’s and 
Lewis’s semantics. In a Stalnaker model, there is always a single most similar world (or 
no world) to the actual world, whereas Lewis’s semantics allows for a set of worlds (or 
no world) whose elements are equally similar to the actual world. A consequence of the 
difference is that Lewis’s ‘official’ semantics for conditionals, i.e. the system VC, does 
not validate the principle of Conditional Excluded Middle, whereas Stalnaker’s logic 
C2 for conditionals does. In Lewis’s nomenclature, system C2 is labelled by VCS. Cf. 
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 We write α ⇒ γ for the causal reading of “If α, then γ”. According to 
Lewis’s idea of causal dependence, α ⇒ γ is satisfied iff α > γ and  
¬α > ¬γ. We may apply the proposed method of learning conditional in-
formation by taking the minimally informative meaning of α ⇒ γ into ac-
count (instead of the one of α > γ), if we substitute the default assumption. 
We call the adaptation the ‘method of learning causal information’. 
 The substitution of the default assumption to what we call ‘causal dif-
ference assumption’ runs as follows. Assume we have no further contextual 
knowledge. Then, the most similar α ⇒ γ-world from any excluded  
α ⇒ ¬γ-world is a (α ∧ γ)-world, if the excluded α ⇒ ¬γ-world satisfies α. 
Furthermore, the most similar α ⇒ γ-world from any excluded α ⇒ ¬γ-world 
is a (¬α ∧ ¬γ)-world, if the excluded α ⇒ ¬γ-world satisfies ¬α. In sym-
bols, 

 (5)  𝑚𝑚𝑚𝑚𝑚𝑚≤𝑤𝑤𝛼𝛼⇒¬𝛾𝛾[𝛼𝛼 ⇒  𝛾𝛾] = �
𝑤𝑤𝛼𝛼 ∧ 𝛾𝛾 𝑚𝑚𝑖𝑖 𝑤𝑤𝛼𝛼 ⇒ ¬𝛾𝛾(𝛼𝛼) = 1

𝑤𝑤¬𝛼𝛼 ∧¬ 𝛾𝛾 𝑚𝑚𝑖𝑖 𝑤𝑤𝛼𝛼 ⇒ ¬𝛾𝛾(𝛼𝛼) = 0� 

 The causal difference assumption is justified, if we understand causal 
dependence as difference making à la Lewis (cf. Lewis 1973c). The an-
tecedent α makes the difference as to whether γ or ¬γ. Hence, α ⇒ γ 
means that worlds in which α obtains are worlds in which γ obtains, and 
accordingly that worlds in which ¬α obtains are worlds in which ¬γ ob-
tains. It is built in the analysis of causal dependence, so to speak, that the 
difference making factors (α and ¬α) are more dissimilar than the ensuing 
effects. 
 Note that causal dependence is more informative than conditional de-
pendence. For, the minimally informative meaning of [α ⇒ γ] is always a 
strict subset of the minimally informative meaning of [α > γ]. The reason 
is that causal dependence, by definition, conveys in addition to the indica-
tive conditional information also the information [¬α > ¬γ]. In brief, if an 
agent learns α ⇒ γ, our adapted method prescribes that the α ∧ ¬γ-worlds 

                                                           
Lewis (1973b; 1973a); and, for details, Unterhuber (2013, especially chap. 3.2, 3.3.3 
and 3.3.4). The non-identity of Lewis’s and Stalnaker’s semantics implies that the no-
tion of causal dependence employed in our method of learning causal information is 
not equivalent to Lewis’s notion of causal dependence. While the method relies on 
Lewis’s idea, we stick to Stalnaker’s semantics in this paper. 
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transfer their probability shares to the most similar α ∧ γ-world, and the  
¬α ∧ γ-worlds transfer their probability shares to the most similar ¬α ∧ ¬γ-
world. In other words, if the antecedent α is a difference maker, then the 
probability mass of those worlds w that do not satisfy α ⇒ γ is shifted to 
the most similar α ⇒ γ-world wʹ that agrees with the Boolean evaluation 
for α, i. e. w(α) = wʹ(α). 

4.1. Douven’s examples and the Judy Benjamin Problem 

 We apply now our adapted method of learning causal information to 
Douven’s examples and the Judy Benjamin Problem. 

4.1.1. A possible worlds model for the Sundowners Example 

Example 1. The Sundowners Example (Douven & Romeijn 2011, 
645-646) 
Sarah and her sister Marian have arranged to go for sundowners at the 
Westcliff hotel tomorrow. Sarah feels there is some chance that it will 
rain, but thinks they can always enjoy the view from inside. To make 
sure, Marian consults the staff at the Westcliff hotel and finds out that 
in the event of rain, the inside area will be occupied by a wedding party. 
So she tells Sarah: 

  (6)  If it rains tomorrow, we cannot have sundowners at the 
Westcliff. 

Upon learning this conditional, Sarah sets her probability for sundown-
ers and rain to 0, but she does not adapt her probability for rain. 

 We model Sarah’s belief state as the Stalnaker model depicted in Figure 
4. W contains four elements covering the possible events of R, ¬R, S, ¬S, 
where R stands for “it rains tomorrow” and S for “Sarah and Marian can 
have sundowners at the Westcliff tomorrow”. 
 Let us assume that Sarah interprets the conditional uttered by her sister 
Marian as conveying the causal information R ⇒ ¬S. As Douven himself 
points out, the intuition in the Sundowners Example derives from the ver-
dict that whether or not it rains makes the difference as to whether or not 
they have sundowners, but not the other way around: having sundowners 
simply has no effect whatsoever on whether or not it rains (cf. Douven 
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2012, 8). Hence, the change of belief between R and ¬R is more far-fetched 
than between S and ¬S. In other words, the worlds along the horizontal  
axis are more similar than the worlds along the vertical axis. Since R ⇒ ¬S 
≡ (R > ¬S) ∧ (¬R > S), R ⇒ ¬S expresses both that S is excluded under the 
supposition of R and ¬S is excluded under the supposition of ¬R. By the 
causal difference assumption, we obtain min≤w1 [R > ¬S] = w2 and min≤w4 
[¬R > S] = w3. Lewis’s imaging method results in a shift of probability 
shares along the horizontal axis of Figure 4. 

 

Figure 4: A Stalnaker model for Sarah’s belief state in the Sundowners 
Example. The thick arrows illustrate the change of the similarity order 
such that the received information, causally understood as R ⇒ ¬S, is 
minimally informative. Here, the minimally informative meaning of  
R ⇒ ¬S is [R ⇒ ¬S] = [R > ¬S] ∩ [¬R > S] = {w2, w3}. The dashed 
arrows represent the respective transfers of probability. 
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 Imaging on the minimally informative proposition [R ⇒ ¬S] = {w2, w3} 

results in 𝑃𝑃𝑅𝑅⇒¬𝑆𝑆(𝑤𝑤′) =  ∑ 𝑃𝑃(𝑤𝑤)⋅ �1 𝑚𝑚𝑖𝑖 𝑤𝑤𝑅𝑅⇒¬𝑆𝑆 = 𝑤𝑤′
0 otherwise

�𝑤𝑤 : 

 (7)  𝑃𝑃𝑅𝑅⇒¬𝑆𝑆(𝑤𝑤1) =  0 

   𝑃𝑃𝑅𝑅⇒¬𝑆𝑆(𝑤𝑤2) =  𝑃𝑃(𝑤𝑤1) + 𝑃𝑃(𝑤𝑤2) 

   𝑃𝑃𝑅𝑅⇒¬𝑆𝑆(𝑤𝑤3) =  𝑃𝑃(𝑤𝑤3) + 𝑃𝑃(𝑤𝑤4) 

   𝑃𝑃𝑅𝑅⇒¬𝑆𝑆(𝑤𝑤4) =  0 

 We see immediately that both intuitions associated with the Sundown-
ers Example are satisfied, viz. 𝑃𝑃𝑅𝑅⇒¬𝑆𝑆(𝑅𝑅) =  𝑃𝑃(𝑅𝑅) =  𝑃𝑃(𝑤𝑤1) + 𝑃𝑃(𝑤𝑤2) and 
𝑃𝑃𝑅𝑅⇒¬𝑆𝑆(𝑅𝑅 ∧ 𝑆𝑆) = 𝑃𝑃(𝑤𝑤1) = 0. We conclude that the method of learning 
causal information yields the intuitively correct results.12 

4.1.2. A possible worlds model for the Ski Trip Example 

 Example 2. The Ski Trip Example (Douven & Dietz 2011, 33) 
Harry sees his friend Sue buying a skiing outfit. This surprises him a 
bit, because he did not know of any plans of hers to go on a skiing trip. 
He knows that she recently had an important exam and thinks it unlikely 
that she passed. Then he meets Tom, his best friend and also a friend of 
Sue, who is just on his way to Sue to hear whether she passed the exam, 
and who tells him: 

 (8)  If Sue passed the exam, her father will take her on a skiing 
vacation. 

Recalling his earlier observation, Harry now comes to find it more 
likely that Sue passed the exam. 

 We model Harry’s belief state as the Stalnaker model depicted in Figure 
5. W contains eight elements covering the possible events of E, ¬E, S, ¬S, 

                                                           
12  Note that the Sundowners Example seems to be somewhat artificial. It seems plau-
sible that upon hearing her sister’s conditional, Sarah would promptly ask ‘why?’ in 
order to obtain some more contextual information, before setting her probability for 
sundowners and rain to 0. After all, she ‘thinks that they can always enjoy the view from 
inside’. 
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B, ¬B, where E stands for “Sue passed the exam”, S for “Sue’s father takes 
her on a skiing vacation”, and B for “Sue buys a skiing outfit”. 
 We assume that Harry interprets the conditional uttered by his friend 
Tom as conveying the causal information E ⇒ S. Furthermore, The Ski 
Trip Example assumes that Harry is equipped with the following contex-
tual knowledge: Sue buying a skiing outfit may causally depend on the in-
vitation of Sue’s father to a skiing vacation, in symbols S ⇒ B. Finally, 
Harry observed Sue buying a skiing outfit, and thus has the factual infor-
mation that B. 
 In total, Harry learns the minimally informative proposition [(E ⇒ S) ∧ 
(S ⇒ B) ∧ B] = {w1}. Since w1 is the only world that is not probabilistically 
excluded, we do not need to appeal to the causal difference assumption in 
this example. 
 

 
Figure 5: An eight-worlds Stalnaker model for Harry’s belief state in 
the Ski Trip Example. Harry learns the minimally informative proposi-
tion [(E ⇒ S) ∧ (S ⇒ B)] = {w ∈ W | (minw≤ [E] ∈ [S]) ∧ (minw≤ [¬E] ∈ 
[¬S ]) ∧ (minw≤ [S] ∈ [B]) ∧ (minw≤ [¬S ] ∈ [¬B])} = {w1, w8}. Since 
Harry also obtains the factual information B, we can also exclude the 
¬B-world w8. (The arrows follow the convention of Figure 4.) 
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 Imaging on the minimally informative proposition [(E ⇒ S) ∧ (S ⇒ B) 
∧ B] = {w1} results in the following probability distribution, where we do 
not display the vanishing probabilities: 

 𝑃𝑃(𝐸𝐸⇒𝑆𝑆)∧(𝑆𝑆 ⇒𝐵𝐵)∧𝐵𝐵(𝑤𝑤′) = 𝑃𝑃∗(𝑤𝑤′) =  ∑ 𝑃𝑃(𝑤𝑤)⋅ �1 𝑚𝑚𝑖𝑖 𝑤𝑤(𝐸𝐸⇒𝑆𝑆)∧(𝑆𝑆 ⇒𝐵𝐵)∧𝐵𝐵 = 𝑤𝑤′
0 otherwise

�𝑤𝑤 : 

 (9)  P*(w1) = 1 

 The result meets the intuition associated with the Ski Trip Example: 
P*(E) > P(E), since P*(E) = P*(w1) and P(E) = P(w1) + P(w2) + P(w5) + 
P(w6). Later on, we will see that the probabilities of the worlds w2, w3, w4 
would not have vanished entirely, if either E ⇒ S or S ⇒ B (or both) had 
conveyed only uncertain information. 
 In Günther (2017), we needed the default assumption to model the Ski 
Trip Example. If we appeal to the causal interpretation in the Ski Trip Ex-
ample, we do neither need the default nor the causal difference assumption 
any more. 

4.1.3. A possible worlds model for the Driving Test Example  

 Example 3. The Driving Test Example (Douven 2012, 3) 
Betty knows that Kevin, the son of her neighbours, was to take his driv-
ing test yesterday. She has no idea whether or not Kevin is a good 
driver; she deems it about as likely as not that Kevin passed the test. 
Betty notices that her neighbours have started to spade their garden. 
Then her mother, who is friends with Kevin’s parents, calls her and tells 
her the following: 

 (10) If Kevin passed the driving test, his parents will throw a gar-
den party. 

Betty figures that, given the spading that has just begun, it is doubtful 
(even if not wholly excluded) that a party can be held in the garden of 
Kevin’s parents in the near future. As a result, Betty lowers her degree 
of belief for Kevin’s having passed the driving test. 

 We model Betty’s belief state as the Stalnaker model depicted in Figure 
6. W contains eight elements covering the possible events of D, ¬D, G, ¬G, 
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S , ¬S , where D stands for “Kevin passed the driving test”, G for “Kevin’s 
parents will throw a garden party”, and S for “Kevin’s parents have started 
to spade their garden”. 
 Assume Betty interprets the conditional uttered by her mother as the 
causal information D ⇒ G. Furthermore, Betty infers from her contextual 
knowledge that because Kevin’s parents are spading their garden, they will 
not throw a garden party, in symbols S ⇒ ¬G. Finally, Betty knows that 
Kevin’s parents have started to spade their garden, and thus has the factual 
information that S. 

 
Figure 6: An eight-worlds Stalnaker model for Betty’s belief state in 
the Driving Test Example. 

 In total, Betty learns the minimally informative proposition [(D ⇒ G) ∧ 
(S ⇒ ¬G) ∧ S] = {w4}. In Figure 6, we see that the Driving Test Example 
is structurally similar to the Ski Trip Example. 
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 Imaging on the minimally informative proposition [(D ⇒ G) ∧ (S ⇒ 
¬G) ∧ S] = {w4} results in the following probability distribution, where we 
do not display the vanishing probabilities: 

 𝑃𝑃(𝐷𝐷⇒𝐺𝐺)∧(𝑆𝑆 ⇒¬𝐺𝐺)∧𝑆𝑆(𝑤𝑤′) = 𝑃𝑃∗(𝑤𝑤′) =  ∑ 𝑃𝑃(𝑤𝑤)⋅ �1 𝑚𝑚𝑖𝑖 𝑤𝑤(𝐷𝐷⇒𝐺𝐺)∧(𝑆𝑆 ⇒¬𝐺𝐺)∧𝑆𝑆 = 𝑤𝑤′
0 otherwise

�𝑤𝑤 : 

 (11) P*(w4) = 1 

 Our method yields again the correct result regarding the intuition asso-
ciated with the Driving Test Example: P*(D) < P(D), since P*(D) = 0 and 
P(D) = P(w1) + P(w2) + P(w5) + P(w6) > 0. 
 The following Judy Benjamin Problem will illustrate that if Betty thinks 
that the conditionals D ⇒ G or S ⇒ ¬G (or both) convey uncertain infor-
mation, then the probability shares for some other worlds will not reduce 
to zero. This fact fits nicely with the Driving Test Examples’s remark that 
“given the spading that has just begun, it is doubtful [or uncertain] (even if 
not wholly excluded) that a party can be held in the garden of Kevin’s par-
ents”. We will treat the application of our method to the learning of uncer-
tain causal information in the next section. 

4.1.4. A possible worlds model for the Judy Benjamin Problem 

 We apply now our method of learning causal information to a case, in 
which the received causal information is uncertain. We show thereby that 
the method may be generalised to those cases in which the learned causal 
information is uncertain, provided we use Jeffrey imaging. Following the 
presentation in Hartmann & Rad (2017), we consider Bas van Fraassen’s 
Judy Benjamin Problem (cf. van Fraassen 1981, 376-379). 

Example 4. The Judy Benjamin Problem (Hartmann & Rad 2017, 
7)) 
A soldier, Judy Benjamin, is dropped with her platoon in a territory that 
is divided in two halves, Red territory and Blue territory, respectively, 
with each territory in turn being divided in equal parts, Second Com-
pany area and Headquarters Company area, thus forming four quadrants 
of roughly equal size. Because the platoon was dropped more or less at 
the center of the whole territory, Judy Benjamin deems it equally likely 
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that they are in one quadrant as that they are in any of the others. They 
then receive the following radio message: 

 (12) I can’t be sure where you are. If you are in Red Territory, then 
the odds are 3 : 1 that you are in Second Company area. 

After this, the radio contact breaks down. Supposing that Judy accepts 
this message, how should she adjust her degrees of belief? 

 Douven claims that the probability of being in red territory should, in-
tuitively, remain unchanged after learning the uncertain information. Fur-
thermore, the probability distribution after hearing the radio message, i. e. 
P*, should take the following values: 

 (13) 𝑃𝑃∗(𝑅𝑅 ∧  𝑆𝑆) =  3
8
 𝑃𝑃∗(𝑅𝑅 ∧  ¬𝑆𝑆) =  1

8
 

   𝑃𝑃∗(¬𝑅𝑅 ∧  𝑆𝑆) =  1
4
 𝑃𝑃∗(¬𝑅𝑅 ∧  ¬𝑆𝑆) =  1

4
 

 We model Judy Benjamin’s belief state as the Stalnaker model depicted 
in Figure 7. W contains four elements covering the possible events of R, 
¬R, S, ¬S, where R stands for “Judy Benjamin’s platoon is in Red territory”, 
and S for “Judy Benjamin’s platoon is in Second Company area”. The story 
prescribes that the probability distribution before learning the uncertain in-
formation is given by: 

 (14) 𝑃𝑃(𝑅𝑅 ∧ 𝑆𝑆) =  𝑃𝑃(𝑅𝑅 ∧ ¬𝑆𝑆) =  𝑃𝑃(¬𝑅𝑅 ∧ 𝑆𝑆) =  𝑃𝑃(¬𝑅𝑅 ∧ ¬𝑆𝑆) = 1
4
 

 In the previous examples, our agents implicitly learned Stalnaker con-
ditionals of the form α > γ with certainty. According to Theorem 1, this 
amounts to the constraint that P(α > γ) = Pα(γ) = 1 (provided α is not a 
contradiction). Given this constraint and since Pα is a probability distribu-
tion, we have Pα(¬γ) = 1 − Pα(γ) = 0. This means that we were able to 
probabilistically exclude any ¬γ-world under the supposition of α. 
 Now, our agent Judy Benjamin learns uncertain causal information, i.e. 
she implicitly learns Stalnaker conditionals with uncertainty. According to 
Theorem 1 and since R ⇒ S is equivalent to (R > S) ∧ (¬R > ¬S), this 
amounts in the Judy Benjamin Problem to the constraint that 𝑃𝑃(𝑅𝑅 ⇒ 𝑆𝑆) = 3

4
 . 
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By our method, we obtain 𝑃𝑃(𝑅𝑅 ⇒ ¬𝑆𝑆) = 1
4
. In contrast to learning causal 

information with certainty, we cannot subtract the whole probabilistic mass 
from the ¬S -worlds under the supposition of R, and accordingly from the 
S-worlds under the supposition of ¬R. However, Judy Benjamin is in-
formed from an external source about the proportion to which she should 
gradually ‘exclude’ or downweigh the probability share of R ⇒ ¬S-worlds. 
Equivalently, we may say that the most similar R ⇒ S-world (from any R 
⇒ ¬S)-world) obtains a gradual upweight of probability such that it re-
ceives 3

4
 of the probability shares of the R ⇒ ¬S-worlds; in turn, however, 

this R ⇒ ¬S-world then receives a probability share from the R ⇒ S-world 
weighed by 1

4
. Note that in Stalnaker models R ⇒ ¬S is equivalent to  

R > ¬S ∧ ¬R > S. 

 
Figure 7: A Stalnaker model for Private Benjamin’s belief state in the 
Judy Benjamin Problem. The thick arrows illustrate the specification of a 
similarity order ≤ʹ such that the received information [R ⇒ S] is minimally 
informative. Note that each world having two outgoing thick arrows (one 
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for R > S and one for ¬R > ¬S) satisfies R ⇒ S. The thin arrows illustrate 
the specification of another similarity order ≤ ≠ ≤ʹ such that the received 
information [R ⇒ ¬S] is minimally informative. Each world having two 
outgoing thin arrows (one for R > ¬S and one for ¬R > S) satisfies  
R ⇒ ¬S). In sum, the similarity orders are specified such that one makes 
[R ⇒ S] = {w1, w4} a minimally informative proposition and the other 
makes the complement proposition [R ⇒ ¬S] = {w2, w3} a minimally in-
formative proposition. By the causal difference assumption, we obtain 
𝑚𝑚𝑚𝑚𝑚𝑚≤𝑤𝑤2

′  [R ⇒ S] = w1 and 𝑚𝑚𝑚𝑚𝑚𝑚≤𝑤𝑤3
′ [R ⇒ S] = w4. Furthermore, we obtain 

𝑚𝑚𝑚𝑚𝑚𝑚≤𝑤𝑤1 [R ⇒ ¬S] = w2 and 𝑚𝑚𝑚𝑚𝑚𝑚≤𝑤𝑤4 [R ⇒ ¬S] = w3. The thick dashed 
arrows represent the transfer of k· P(w), while the thin dashed arrows rep-
resent the transfer of (1 – k) · P(w). The application of Jeffrey imaging on 
[R ⇒ S] with k = 3

4
 leads to the following calculation for the probability 

distribution: 𝑃𝑃3 4⁄
𝑅𝑅⇒𝑆𝑆(𝑤𝑤1) =  3 4⁄  · P(𝑤𝑤1) + 3 4⁄  · P(𝑤𝑤2), and 𝑃𝑃3 4⁄

𝑅𝑅⇒𝑆𝑆(𝑤𝑤2) =
 1 4⁄  · P(𝑤𝑤1) + 1 4⁄  · P(𝑤𝑤2), and 𝑃𝑃3 4⁄

𝑅𝑅⇒𝑆𝑆(𝑤𝑤3) =  1 4⁄  · P(𝑤𝑤3) + 
1 4⁄  · P(𝑤𝑤4), and 𝑃𝑃3 4⁄

𝑅𝑅⇒𝑆𝑆(𝑤𝑤4) =  3 4⁄  · P(𝑤𝑤3) + 3 4⁄  · P(𝑤𝑤4).  

 We apply now Jeffrey imaging to the Judy Benjamin Problem, where a 
source external to Judy provides her with the information that k = 3

4
.  

𝑃𝑃𝑘𝑘
𝑅𝑅⇒𝑆𝑆(𝑤𝑤′) = � �𝑃𝑃(𝑤𝑤) ∙ �

𝑘𝑘 if 𝑤𝑤𝑅𝑅⇒𝑆𝑆 = 𝑤𝑤′

0     otherwise
� + 𝑃𝑃(𝑤𝑤)

𝑤𝑤

∙ �
1 − 𝑘𝑘 if 𝑤𝑤𝑅𝑅⇒¬𝑆𝑆 = 𝑤𝑤′

0     otherwise
�� 

 Given the probability distribution before the learning process in Equa-
tion (14), Judy obtains the following probability distribution after being 
informed that P(R ⇒ S) = 3

4
: 

 (16) 𝑃𝑃3 4⁄
𝑅𝑅⇒𝑆𝑆(𝑤𝑤1) =  𝑃𝑃3 4⁄

𝑅𝑅⇒𝑆𝑆(𝑅𝑅 ∧ 𝑆𝑆) =  3
8
 

   𝑃𝑃3 4⁄
𝑅𝑅⇒S(𝑤𝑤2) =  𝑃𝑃3 4⁄

𝑅𝑅⇒𝑆𝑆(𝑅𝑅 ∧ ¬𝑆𝑆) =  1
8
 

   𝑃𝑃3 4⁄
𝑅𝑅⇒S(𝑤𝑤3) =  𝑃𝑃3 4⁄

𝑅𝑅⇒S(¬𝑅𝑅 ∧ 𝑆𝑆) =  1
8
 

   𝑃𝑃3 4⁄
𝑅𝑅⇒S(𝑤𝑤4) =  𝑃𝑃3 4⁄

𝑅𝑅⇒S(¬𝑅𝑅 ∧ ¬𝑆𝑆) =  3
8
 

(15) 
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 The probability distribution of (16) does not conform to Douven’s intu-
itively correct distribution of (13), while the desideratum 𝑃𝑃3 4⁄

𝑅𝑅>𝑆𝑆(R) =  
P(R) = 1

2
 is met. Note that the learning of causal information results in  

𝑃𝑃3 4⁄
𝑅𝑅⇒𝑆𝑆(¬R ∧ ¬S) = 3

8
, which may be plausible for cases of causal dependence. 

However, we do not think that the conditional of the Judy Benjamin Prob-
lem is meant to express a causal dependence relation. In Günther (2017), 
we treated the received uncertain conditional as merely carrying uncertain 
conditional information. Applying the method of learning uncertain condi-
tional information allowed us to offer a solution to the Judy Benjamin Prob-
lem that agrees with Douven’s desired distribution of (13).  
 The Judy Benjamin Problem illustrates quite vividly the main differ-
ence between learning conditional and causal information. A merely con-
ditional understanding of the conditional in the Judy Benjamin Problem 
does not affect the (row of) ¬α-worlds, whereas the difference-making or 
causal dependence interpretation of the conditional affects the (row of)  
¬α-worlds. 

5. Stalnaker inferences to the explanatory status  
of the antecedent 

 The method of learning causal information provides a formally precise 
implementation for when and how Douven’s explanatory status of the an-
tecedent should change. Recall his idea from Section 2 that the explanatory 
power of the antecedent with respect to the consequent determines the 
probability of the antecedent after learning the conditional. The idea is re-
lated to abduction, nowadays more commonly referred to as ‘inference to 
the best explanation’, or at least to a good explanation. The schema of such 
an inference runs as follows: α explains γ (well), and γ obtains. Therefore, 
α is true, or at least more likely. 
 We may interpret a Stalnaker agent’s learning of α ⇒ γ as inference to 
a good explanation. Suppose an agent believes the fact γ and receives the 
information α ⇒ γ. Then the agent infers that α explains γ (well). For,  
α ⇒ γ implies that ¬γ would be the case, if α were not the case. But γ is the 
case and thus indicates that α is the case as well. The Ski Trip Example is an 
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instance of this type of reasoning. Harry learns E ⇒ S, S ⇒ B and the fact B. 
He infers by our method of learning causal information that S explains B and, 
in turn, that E explains S. Consequently, 𝑃𝑃(𝐸𝐸⇒𝑆𝑆)∧(𝑆𝑆 ⇒𝐵𝐵)∧𝐵𝐵(𝐸𝐸) ≥ 𝑃𝑃(𝐸𝐸). In gen-
eral, 𝑃𝑃𝑘𝑘

(𝛼𝛼⇒𝛾𝛾)∧𝛾𝛾(𝛼𝛼) ≥ 𝑃𝑃(𝛼𝛼), if k > 1
2
 . In such a case, we call α the antecedent 

in a ‘Stalnaker inference to a good explanatory status of the antecedent’, or 
simply the antecedent in a ‘Stalnaker inference to a good explanans’. 
 In the Driving Test Example, Kevin’s passing the driving test (D) is at 
odds with the parent’s spading their garden (S). D does not explain S (well). 
There is rather a tension between the occurrence of D and S. We can again 
formally implement the reasoning. Suppose S and S ⇒ ¬G, where G stands 
for “Kevin’s parents will throw a garden party”. Betty receives the infor-
mation that D ⇒ G. S and S ⇒ ¬G implies that G is not the case. By  
D ⇒ G, we may therefrom infer that D is not the case either. For, if D were 
the case, G would be the case. Consequently, 𝑃𝑃(𝐷𝐷⇒𝐺𝐺)∧(𝑆𝑆 ⇒¬𝐺𝐺)∧𝑆𝑆(𝐷𝐷) ≤ 𝑃𝑃(𝐷𝐷). 
In general, 𝑃𝑃𝑘𝑘

(𝛼𝛼⇒𝛾𝛾)∧¬𝛾𝛾(𝛼𝛼) ≤ 𝑃𝑃(𝛼𝛼), if k > 1
2
 . In such a case, we call α the 

antecedent in a ‘Stalnaker inference to a bad explanans’. Notice that our 
framework allows for a probabilification of the Stalnaker inferences, if un-
certain causal information is learned. 

6. Conclusion 

 We have seen that Douven’s dismissal of the Stalnaker conditional as a 
tool to model the learning of conditional and causal information is unjusti-
fied. Rather, this type of learning may be modelled by Jeffrey imaging on 
the meaning of Stalnaker conditionals under the following condition: the 
similarity order of the Stalnaker model is changed in a way such that the 
meaning of the conditional is minimally informative. Both methods of 
learning information align with the intuitively correct results in Douven’s 
benchmark examples. However, Douven’s intuitions about the Judy Ben-
jamin Problem are only met, if we understand the conditional Judy receives 
as conveying merely conditional information. 
 We have shown that the method of learning (uncertain) conditional in-
formation proposed in Günther (2017) may be adapted to a learning method 
of (uncertain) causal information. The adaptation is based on the Stalnaker 
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conditional, for which Lewis’s idea of causal dependence is implemented. 
The two methods come with two different assumptions, i.e. the default as-
sumption and the causal difference assumption, respectively. The combi-
nation of the two methods provides a unified framework that manages to 
clearly discern between a merely conditional and a causal reading of the 
conditional “If α, then γ”. Hence, the general method cannot be attacked 
for not being applicable to conditionals that (are supposed to) express 
causal dependences. In detail, if no further contextual information is 
available, conjunctive information is strictly more informative than 
causal information, which is in turn strictly more informative than condi-
tional information. For, the minimally informative conjunctive, causal 
and conditional propositions stand in the following strict subset relation: 
[α ∧ γ] ⊂ [α ⇒ γ] ⊂ [α > γ]. 
 The causal dependence reading can be used to formalise Douven’s ex-
planatory status of the antecedent. We thereby convey the explanatory sta-
tus a precise formal meaning that may be used to operationalize Douven’s 
idea that explanatory considerations play a core role in learning condition-
als. Furthermore, the results suggest that we should distinguish between a 
merely conditional or suppositional interpretation and a causal dependence 
interpretation of a conditional. A supposition should not affect those cases, 
in which the antecedent is not satisfied, whereas a difference-making con-
ditional should. Based on this distinction, we hope that the proposed frame-
work can help psychologists of reasoning to provide an empirically ade-
quate account of actual reasoning behaviour with respect to the learning of 
conditional and causal information. 
 The advantages of our unified framework of learning uncertain infor-
mation, as compared to alternative accounts, will be assessed in a follow-
up paper. We plan to compare our account in detail to Douven’s account of 
learning conditional information and Bayesian accounts of learning condi-
tionals. In particular, we will show that the Bayesian account of Hartmann 
& Rad (2017) – that minimizes the Kullback-Leibler divergence on a fixed 
Bayesian network – has severe problems to capture the merely conditional 
interpretation of conditionals. As a consequence the Judy Benjamin Prob-
lem remains troublesome for their account. 
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