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The Semantics of Empirical Unverifiability 

IGOR SEDLÁR1

 Cmorej (1988; 1990) argues that the existence of unverifiable and 
unfalsifiable empirical propositions is a consequence of certain plausible 
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ABSTRACT: Pavel Cmorej has argued that the existence of unverifiable and unfalsifiable 
empirical propositions follows from certain plausible assumptions concerning the 
notions of possibility and verification. Cmorej proves, it the context of a bi-modal 
alethic-epistemic axiom system AM4, that (1) 𝑝𝑝 and it is not verified that 𝑝𝑝 is 
unverifiable; (2) 𝑝𝑝 or it is falsified that 𝑝𝑝 is unfalsifiable; (3) every unverifiable 𝑝𝑝 is 
logically equivalent to 𝑝𝑝 and it is not verifiable that 𝑝𝑝; (4) every unverifiable 𝑝𝑝 entails that 
𝑝𝑝 is unverifiable. This article elaborates on Cmorej’s results in three ways. Firstly, we 
formulate a version of neighbourhood semantics for AM4 and prove completeness. This 
allows us to replace Cmorej’s axiomatic derivations with simple model-theoretic 
arguments. Secondly, we link Cmorej’s results to two well-known paradoxes, namely 
Moore’s Paradox and the Knowability Paradox. Thirdly, we generalise Cmorej’s results, 
show them to be independent of each other and argue that results (3) and (4) are 
independent of any assumptions concerning the notion of verification. 

KEYWORDS: Completeness – epistemic logic – knowability– verifiability. 

1. Introduction 

                                                      
1  This work has been supported by the VEGA grant no. 2/0019/12, Language and the 
Determination of Meaning in Communication. I am grateful to Pavel Cmorej for 
clarification, comments and encouragement. 
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assumptions concerning the notions of possibility and verification.2

 This article elaborates on Cmorej’s results and sets them into a wider 
philosophical context. Firstly, Cmorej’s arguments are simplified by 
replacing the complex axiomatic proofs of the results concerning (1) – (4) 
by simple model-theoretic arguments. Secondly, Cmorej’s result concern-
ing (1) is linked to two well-known paradoxes, namely Moore’s Paradox 
(Green – Williams 2007; Moore 1942) and the Knowability Paradox (Fitch 
1963; Salerno 2009). Thirdly, the results are generalised and shown to be 
independent. In particular, we set up a weak bi-modal logic that validates 

 His 
argument is proof-theoretic and employs an alethic-epistemic axiom 
system. Cmorej’s main result is that schemas 

 (1)  ~𝑀𝑀𝑀𝑀 (𝛼𝛼 ∧  ~𝑀𝑀𝛼𝛼) 
 (2)  ~𝑀𝑀𝑀𝑀 (𝛼𝛼 ∨  𝑀𝑀𝛼𝛼), 

are provable in the axiom system in question, where 𝑀𝑀 stands for ‘it is 
possible that’, 𝑀𝑀 stands for ‘it is verified that’ and 𝑀𝑀 stands for ‘it is falsified 
that’ (𝑀𝑀𝛼𝛼 is defined as V~𝛼𝛼). If 𝛼𝛼 is a hitherto unverified empirical 
proposition, then 𝛼𝛼 ∧ ~𝑀𝑀𝛼𝛼 is empirical as well. Yet, according to (1), it is 
unverifiable. Similarly, if 𝛼𝛼 is empirical and not falsified, then 𝛼𝛼 ∨ 𝑀𝑀𝛼𝛼 is 
empirical and, according to (2), not falsifiable.  
 Cmorej then goes on to establish two further results concerning 
unverifiable propositions. Firstly, each unverifiable proposition 𝛼𝛼 is 
necessarily equivalent to 𝛼𝛼 ∧ ~𝑀𝑀𝛼𝛼. In other words,  

 (3)  ~𝑀𝑀𝑀𝑀𝛼𝛼 ⊃  𝐿𝐿 �𝛼𝛼 ≡ (𝛼𝛼 ∧ ~𝑀𝑀𝛼𝛼)� 

is provable (where 𝐿𝐿 stands for ‘it is necessary that’). Secondly, each 
unverifiable proposition 𝛼𝛼 entails a proposition saying that 𝛼𝛼 is unverifiable, 
i.e. 

 (4)  ~𝑀𝑀 𝑀𝑀 𝛼𝛼 ⊃  𝐿𝐿( 𝛼𝛼 ⊃ ~𝑀𝑀𝑀𝑀𝛼𝛼) 

is provable. (Similar results are established for falsifiability, but these are 
easily derivable form the results stated above by applying the definition of 
𝑀𝑀.) 

                                                      
2  Cmorej (1990) is a translation of the Slovak original Cmorej (1988). I’ll refer to the 
internationally accessible Cmorej (1990) for the rest of the article. 
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(1) and (2) without validating (3), (4) and most Cmorej’s assumptions 
concerning 𝑀𝑀 and 𝑀𝑀. We also formulate a bi-modal logic that validates (3) 
and (4) without validating (1) or (2). The precise nature of the latter logic 
suggests that the results concerning (3) and (4) are independent of any 
assumptions concerning the notion of verification. 
 The article is organised as follows. Section 2 introduces Cmorej’s axiom 
system AM4 and establishes completeness with respect to a specific class of 
modal neighbourhood frames (Chellas 1980; Segerberg 1971). This allows 
us to formulate simple model-theoretic arguments establishing (1) – (4). 
Section 3 relates Cmorej’s result concerning (1) to Moore’s Paradox and 
the Knowability Paradox. Section 4 shows that the results concerning (1) 
and (2) are independent from the results concerning (3) and (4), and that 
the latter two are independent of any assumptions concerning the notion of 
verification. The final section sums up the main points of the article. 

2. Semantic arguments 

 This section introduces the axiom system AM4 (see 2.1.), discusses 
models (2.2.), proves completeness (2.3.) and provides simple model-
theoretic arguments establishing (1) – (4) (2.4.). 

2.1. AM4 

 Let us fix a denumerable set 𝑀𝑀𝑉𝑉𝑉𝑉 of propositional variables. Every 
propositional variable 𝑝𝑝, 𝑞𝑞, … is a formula. If 𝛼𝛼 and 𝛽𝛽 are formulas, then so 
are ~𝛼𝛼,𝛼𝛼 ∧ 𝛽𝛽, 𝐿𝐿𝛼𝛼 and 𝑀𝑀𝛼𝛼. Other Boolean connectives are defined in the 
usual fashion. 𝐿𝐿𝛼𝛼 is read as ‘it is necessary that 𝛼𝛼’ (or ‘𝛼𝛼 is necessary’) and 
𝑀𝑀𝛼𝛼 as ‘it is verified that 𝛼𝛼’ (or ‘𝛼𝛼 is verified’). 𝑀𝑀𝛼𝛼 is defined as ~𝐿𝐿~𝛼𝛼 and is 
read as ‘it is possible that 𝛼𝛼’ (or ‘𝛼𝛼 is possible’). 𝑀𝑀𝛼𝛼 is defined as 𝑀𝑀~𝛼𝛼 and is 
read as ‘it is falsified that 𝛼𝛼’ (or ‘𝛼𝛼 is falsified’). A formula is tautologous if it 
is a substitution instance of a tautology of classical propositional logic. 

Definition 2.1 (AM4, Cmorej 1990). The axiom system AM4 is given 
by the following axiom schemas and rules of inference. Every tauto-
logous formula is an axiom. Other axioms are all formulas of the form: 

(A1) 𝐿𝐿𝛼𝛼 ⊃ 𝛼𝛼 (B2) 𝑀𝑀(𝛼𝛼 ∧ 𝛽𝛽) ⊃ (𝑀𝑀𝛼𝛼 ∧ 𝑀𝑀𝛽𝛽) 
(A2) 𝐿𝐿(𝛼𝛼 ⊃ 𝛽𝛽) ⊃ (𝐿𝐿𝛼𝛼 ⊃ 𝐿𝐿𝛽𝛽) (B3) (𝑀𝑀𝛼𝛼 ∧ 𝑀𝑀𝛽𝛽) ⊃ 𝑀𝑀(𝛼𝛼 ∧ 𝛽𝛽) 
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(A3) ~𝐿𝐿𝛼𝛼 ⊃ 𝐿𝐿~𝐿𝐿𝛼𝛼 (B4) 𝑀𝑀𝛼𝛼 ⊃ 𝑀𝑀𝑀𝑀𝛼𝛼 
(B1) 𝑀𝑀𝛼𝛼 ⊃ 𝛼𝛼 (C) 𝐿𝐿(𝛼𝛼 ⊃ 𝛽𝛽) ⊃ (𝑀𝑀𝛼𝛼 ⊃ 𝑀𝑀𝛽𝛽) 

There are two rules of inference, namely Modus Ponens and 𝐿𝐿-Nece-
ssitation (‘If ⊢ 𝛼𝛼, then ⊢ 𝐿𝐿𝛼𝛼’). Proofs and derivations are defined as 
usual. ∎ 

 The choice of ‘alethic’ 𝐿𝐿-axioms and rules and ‘methodological’  
𝑀𝑀-axioms makes it clear that 𝐿𝐿 is a normal modality governed by axioms of 
the system S5 (see Hughes – Cresswell 1996), while 𝑀𝑀 is a regular modality 
governed at least by the axioms of the system RT4 (see Chellas 1980). We 
shall see later on that, in fact, 𝑀𝑀 is a non-normal modality as the rule of  
𝑀𝑀-Necessitation is not a derivable rule. In other words, verification is not 
closed under admissible zero-premise inference rules. However, as the 
‘interaction axiom’ (C) suggests, verification is closed under admissible one-
premise rules. In fact, a consequence of the inclusion of (B3) among axioms 
entails that verification is closed under admissible multi-premise rules as 
well. 

 Lemma 2.2. 𝐿𝐿𝛼𝛼 ⊃ 𝐿𝐿𝐿𝐿𝛼𝛼 is derivable in AM4. 

 Proof. Folklore (see Hughes – Cresswell 1996, 58).□ 

 Lemma 2.3. If 𝛼𝛼 ≡ 𝛽𝛽 is provable in AM4, then so is 𝑀𝑀𝛼𝛼 ≡ 𝑀𝑀𝛽𝛽. 

Proof. We make use of some obviously admissible S5-rules. If ⊢ 𝛼𝛼 ≡ 𝛽𝛽, 
then ⊢ 𝐿𝐿(𝛼𝛼 ≡ 𝛽𝛽), then ⊢ 𝐿𝐿(𝛼𝛼 ⊃ 𝛽𝛽) ∧ 𝐿𝐿(𝛽𝛽 ⊃ 𝛼𝛼), then ⊢ (𝑀𝑀𝛼𝛼 ⊃ 𝑀𝑀𝛽𝛽) ∧
(𝑀𝑀𝛽𝛽 ⊃ 𝑀𝑀𝛼𝛼). □ 

2.2. Models 

 The models of our choice are neighbourhood models, where neigh-
bourhoods (to be defined shortly) are closed under intersection. The 
assumption of closure under supersets, standard when regular systems are 
dealt with, is simulated by a non-standard truth-condition for 𝑀𝑀𝛼𝛼. 𝐿𝐿 is 
treated as a universal modality. 

 Definition 2.4 (Frames). A frame is a couple  

 ℱ =  〈𝒲𝒲,𝒩𝒩〉, 
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where 𝒲𝒲 is a non-empty set (‘states’ or ‘(possible) worlds’) and 𝒩𝒩 is a 
function from 𝒲𝒲 to subsets of the power-set of 𝒲𝒲 (‘neighbourhood 
function’). Hence, 𝒩𝒩(𝑤𝑤) is a set of sets of worlds (‘neighbourhoods of 
𝑤𝑤’). It is assumed that 

• (c) If 𝑋𝑋,𝑌𝑌 ∈ 𝒩𝒩(𝑤𝑤), then 𝑋𝑋 ∩ 𝑌𝑌 ∈ 𝒩𝒩(𝑤𝑤); 
• (t) If 𝑋𝑋 ∈ 𝒩𝒩(𝑤𝑤), then 𝑤𝑤 ∈ 𝑋𝑋; 
• (iv) If 𝑋𝑋 ∈ 𝒩𝒩(𝑤𝑤), then {�𝑣𝑣 | 𝑋𝑋 ∈ 𝒩𝒩(𝑣𝑣)} ∈ 𝒩𝒩(𝑤𝑤). ∎ 

Sets 𝑋𝑋 ∈ 𝒩𝒩(𝑤𝑤) can be thought of as propositions ‘directly’ verified at 𝑤𝑤. 
The assumption (c) guarantees that (B3) is valid in every frame (to be 
defined shortly); (t) ensures (B1) and (iv) ensures (B4), (see Chellas 1980). 

Definition 2.5 (Models and Truth-Sets). A model based on ℱ is  
a couple  

 ℳ =  〈ℱ,𝒱𝒱〉, 

where 𝒱𝒱 is a function from 𝑀𝑀𝑉𝑉𝑉𝑉 to subsets of 𝒲𝒲 (‘valuation’). The 
truth-set |𝛼𝛼|ℳ of a formula 𝛼𝛼 in model ℳ is defined recursively as 
follows: 

• |𝑝𝑝|ℳ = 𝒱𝒱(𝑝𝑝); 
• |~𝛼𝛼|ℳ = 𝒲𝒲 ∖ |𝛼𝛼|ℳ; 
• |𝛼𝛼 ∧ 𝛽𝛽|ℳ = |𝛼𝛼|ℳ ∩ |𝛽𝛽|ℳ; 
• |𝑀𝑀𝛼𝛼|ℳ = { �𝑤𝑤 | 𝑋𝑋 ⊆ |𝛼𝛼|ℳ  for some 𝑋𝑋 ∈ 𝒩𝒩(𝑤𝑤)}; 
• |𝐿𝐿𝛼𝛼|ℳ = 𝒲𝒲 if |𝛼𝛼|ℳ = 𝒲𝒲;  |𝐿𝐿𝛼𝛼|ℳ = ∅ otherwise. ∎ 

𝑤𝑤 ∈ |𝛼𝛼|ℳ is read as ‘𝛼𝛼 is true in 𝑤𝑤 (in the context of ℳ)’. This will be 
written also as ℳ,𝑤𝑤 ⊨ 𝛼𝛼. Informally, 𝑀𝑀𝛼𝛼 is true in 𝑤𝑤 iff there is  
a proposition directly verified at 𝑤𝑤 that ‘entails’ 𝛼𝛼. 𝐿𝐿𝛼𝛼 is true at any world 
iff 𝛼𝛼 is true in every world. ℳ will not be mentioned when the identity of 
the model in question is clear from the context or immaterial. 

Definition 2.6 (Consequence). 𝛼𝛼 is a ℳ-consequence of a set of formulas 
Γiff  

�|𝛽𝛽|ℳ
𝛽𝛽∈Γ

 ⊆ |𝛼𝛼|ℳ 
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(‘Γ ℳ-entails 𝛼𝛼’). 𝛼𝛼 is ℳ-valid iff it is an ℳ-consequence of the empty 
set. 𝛼𝛼 is a ℱ-consequence of Γ iff it is a ℳ-consequence of Γ for every 
ℳ based on ℱ. If 𝒞𝒞 is a class of frames (models), then 𝛼𝛼 is  
a 𝒞𝒞-consequence of Γ iff it is an ℱ-consequence (ℳ-consequence) of Γ 
for every ℱ (ℳ) in 𝒞𝒞. Similarly for 𝒞𝒞-validity. ∎ 

 Γ ℳ-entails 𝛼𝛼 iff there is no world in ℳ where all the ‘assumptions’ in 
Γ are true, but 𝛼𝛼 is false. 𝛼𝛼 is ℳ-valid iff it is true ‘throughout the model 
ℳ’. 

Example 2.7. Let us consider an example. Let the set of worlds be 
{𝑣𝑣,𝑢𝑢} and assume that the truth-set of 𝑝𝑝 is {𝑣𝑣}, while the truth-set of 𝑞𝑞 
is {𝑣𝑣, 𝑢𝑢}. In addition, let 𝒩𝒩(𝑣𝑣) = {{ 𝑣𝑣}} and 𝒩𝒩(𝑢𝑢) = ∅. It is easy to 
check that this model satisfies the conditions (c), (t) and (iv). 𝑞𝑞 is valid 
in the model and, hence, 𝐿𝐿𝑞𝑞 holds in both worlds. So does ~𝐿𝐿(𝑝𝑝 ∧ 𝑞𝑞). 
𝑀𝑀𝑞𝑞 holds in 𝑣𝑣, because {𝑣𝑣} ∈  𝒩𝒩(𝑣𝑣) and {𝑣𝑣} ⊆ {𝑣𝑣, 𝑢𝑢}, the truth-set of 
𝑞𝑞. However, 𝑀𝑀𝑞𝑞 does not hold in 𝑢𝑢. Note that even 𝑀𝑀~𝑞𝑞 is false in 𝑢𝑢. 
The truth-set of ~𝑞𝑞 is ∅, but, obviously, ∅ ∉ ∅. In fact, ~𝑀𝑀𝛼𝛼 holds in 
𝑢𝑢 for every formula 𝛼𝛼. In conjunction with our completeness proof of 
Section 2.3, this example shows that Cmorej’s 𝑀𝑀 is not a normal 
modality (as such, it would have to satisfy 𝑀𝑀-necessitation). ∎ 

 Neighbourhood semantics has a wide range of applications, including 
models of coalitions within games (Pauly 2002). Neighbourhood models 
have recently been applied to an epistemic language with both normal an 
non-normal modalities within the project of evidence logics (see van Ben-
them – Fernández-Duque – Pacuit 2014; van Benthem – Paciut 2011). In 
view of our completeness result established below, Cmorej may be credited 
with an early contribution to evidence logic. 

2.3. Completeness 

 The goal of the present subsection is to show that 𝛼𝛼 is derivable from a 
set of assumptions Γ in AM4 iff Γ ℱ-entails 𝛼𝛼 in every ℱ. One half of the 
claim is established easily. 

Proposition 2.8 (Soundness). If 𝛼𝛼 is derivable from a set of assumptions  
𝛤𝛤 in AM4, then 𝛤𝛤 ℱ-entails 𝛼𝛼 in every ℱ. 
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Proof. It is sufficient to show that every axiom is valid in every frame 
and that the rules of inference preserve validity. All cases are straight-
forward. Nevertheless, let us prove the validity of (B3) and (B4). First, 
(B3). Consider any ℳ,𝑤𝑤. If ℳ,𝑤𝑤 ⊨ 𝑀𝑀𝛼𝛼 ∩ 𝑀𝑀𝛽𝛽, then there is 𝑋𝑋 ∈ 𝒩𝒩(𝑤𝑤) 
such that 𝑋𝑋 ⊆ |𝛼𝛼| and there is 𝑌𝑌 ∈ 𝒩𝒩(𝑤𝑤) such that 𝑌𝑌 ⊆ |𝛽𝛽|. But  
then 𝑋𝑋 ∩ 𝑌𝑌 ∈ 𝒩𝒩(𝑤𝑤) by (c). Obviously, 𝑋𝑋 ∩ 𝑌𝑌 ⊆ |𝛼𝛼 ∧ 𝛽𝛽|. Hence, 
ℳ,𝑤𝑤 ⊨ 𝑀𝑀(𝛼𝛼 ∧ 𝛽𝛽). Next, (B4). If ℳ,𝑤𝑤 ⊨ 𝑀𝑀𝛼𝛼, then there is 𝑋𝑋 ∈ 𝒩𝒩(𝑤𝑤) 
such that 𝑋𝑋 ⊆ |𝛼𝛼|. By (iv), { �𝑣𝑣 | 𝑋𝑋 ∈ 𝒩𝒩(𝑣𝑣)} ∈ 𝒩𝒩(𝑤𝑤). It is plain that 
{𝑣𝑣 | 𝑋𝑋 ∈ 𝒩𝒩(𝑣𝑣)} ⊆ |𝑀𝑀𝛼𝛼|. In other words, there is 𝑌𝑌 ∈ 𝒩𝒩(𝑤𝑤) such that 
𝑌𝑌 ⊆ |𝑀𝑀𝛼𝛼|. Con-sequently, ℳ,𝑤𝑤 ⊨ 𝑀𝑀𝑀𝑀𝛼𝛼. □ 

 To establish the other half of the main claim, we employ the standard 
canonical model technique; see (Chellas 1980), for example. A specific 
feature of our situation is the presence of the universal modality 𝐿𝐿. To deal 
with this extra machinery, we combine the standard completeness 
argument for regular systems with a simple strategy that is used within 
completeness proofs for normal systems with the universal modality (see 
Blackburn – de Rijke –Venema 2001, ch. 7.1). But first, let us re-capitulate 
some standard terminology.3

• Γ is consistent, i.e. there is no {𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ,𝛽𝛽} ⊆ Γ such that 𝛼𝛼1 ∧ …∧
𝛼𝛼𝑛𝑛 ⊃ ~𝛽𝛽 is provable in AM4; and 

 

Definition 2.9 (AM4-sets). A set Γ of formulas is maximal AM4-consist-
ent (‘an AM4-set’) iff 

• Γ is maximal, i.e. if 𝛼𝛼 ∉ Γ, then Γ ∪ {𝛼𝛼} is not consistent. ∎ 

 Lemma 2.10. Some well-known properties of maximal consistent sets: 

• If Γ is an AM4-set, Δ ⊆ Γ and 𝛼𝛼 is derivable form Δ in AM4, then 
𝛼𝛼 ∈ Γ; 

• If Δ is consistent then there is an AM4-set Γ such that Δ ⊆ Γ 
(Lindenbaum’s Lemma); 

 Proof. Standard (see Chellas 1980, ch. 2.6). □ 
                                                      
3  More details on maximal consistent sets and modal completeness proofs are 
provided by Blackburn et al. (2001, ch. 4), Chellas (1980, chs. 2.6-2.7, 4.5, 5.3) and 
Hughes – Cresswell (1996, ch. 6), who discuss normal systems. Chellas (1980, ch. 9) 
discusses completeness proofs for some non-normal systems. 
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 Note that the above Lemma entails that if Γ is an AM4-set, then 
~𝛼𝛼 ∈ Γ iff 𝛼𝛼 ∉ Γ and 𝛼𝛼 ∧ 𝛽𝛽 ∈ Γ iff 𝛼𝛼,𝛽𝛽 ∈ Γ.  

 Definition 2.11 (Pre-models). A pre-model is a tuple  

ℳ0 = 〈𝒲𝒲0,ℛ,𝒩𝒩0,𝒱𝒱0 〉  

 where 

• 𝒲𝒲0 is the set of all AM4-sets, and |𝛼𝛼|0 =  {Γ ∈ 𝒲𝒲0| 𝛼𝛼 ∈ Γ}; 
• ℛΓΔ iff {𝛼𝛼 | 𝐿𝐿𝛼𝛼 ∈ Γ} ⊆ Δ, and ℛ(Γ) = {Δ | ℛΓΔ}; 
• 𝒩𝒩0(Γ) = {|𝛼𝛼|0 |𝑀𝑀𝛼𝛼 ∈ Γ}; 
• 𝒱𝒱0(𝑝𝑝) = |𝑝𝑝|0. ∎ 

 Lemma 2.12. For all Γ ∈ 𝒲𝒲0,𝒩𝒩0(Γ) is closed under (binary) intersections. 

Proof. Assume that 𝑋𝑋,𝑌𝑌 ∈ 𝒩𝒩0(Γ). By the definition of 𝒩𝒩0,𝑋𝑋 = |𝛼𝛼|0 and 
𝑌𝑌 =  |𝛽𝛽|0 for some 𝑀𝑀𝛼𝛼,𝑀𝑀𝛽𝛽 ∈  Γ. By Lemma 2.10, 𝑀𝑀(𝛼𝛼 ∧  𝛽𝛽) ∈ Γ. 
Hence, |𝛼𝛼 ∧ 𝛽𝛽|0 ∈ 𝒩𝒩0. In other words, |𝛼𝛼|0 ∩  |𝛽𝛽|0 ∈ 𝒩𝒩0(Γ). ∎ 

 Lemma 2.13. If Γ ∈ 𝒲𝒲0 and 𝐿𝐿𝛼𝛼 ∉  Γ, then there is Δ ∈ 𝒲𝒲0 such that 

• ℛΓΔ and 
• ~𝛼𝛼 ∈ Δ. 

 Proof. Standard (see Hughes – Cresswell 1996, 115-117). □ 

It is clear that, in pre-models, we can have some Γ,Δ,𝛼𝛼 such that 𝐿𝐿𝛼𝛼 ∈ Γ, 
but 𝛼𝛼 ∉ Δ (if not ℛΓΔ). Hence, in the context of pre-models, 𝐿𝐿 is not  
a universal modality. To fix this, we use a standard ‘trick’. 

Definition 2.14 (Canonical 𝚲𝚲-model). Let Λ ∈ 𝒲𝒲0 . A canonical Λ-
model is a tuple  

ℳΛ  = 〈 𝒲𝒲Λ ,𝒩𝒩Λ ,𝒱𝒱Λ〉  

 where 

• 𝒲𝒲Λ = ℛ(Λ) and |𝛼𝛼|Λ =  |𝛼𝛼|0 ∩𝒲𝒲Λ ; 
• 𝒩𝒩Λ(Γ)  = { 𝑋𝑋 ⊆ 𝒲𝒲Λ ∣  𝑋𝑋 = 𝑋𝑋0 ∩𝒲𝒲Λ  for some 𝑋𝑋0 ∈ 𝒩𝒩0(Γ)}; 
• 𝑀𝑀Λ  (𝑝𝑝)  =  |𝑝𝑝|Λ . ∎ 
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Λ is seen as the ‘centre’ of the model, which universe is the set of AM4-sets 
reachable from the centre via ℛ. Crucially, every Λ-neighbourhood of any 
Γ ∈ 𝒲𝒲0 is a ‘pre-neighbourhood’ of Γ with every AM4-set not reachable 
from the centre ‘bitten off’. 
 Now the goal is to show that, for every Λ,ℳΛ  is indeed a model. 

 Lemma 2.15. |𝛼𝛼|Λ ⊆  |𝛽𝛽|Λ  iff 𝐿𝐿(𝛼𝛼 ⊃  𝛽𝛽) ∈  Λ. 

Proof. We omit the simple argument establishing the right-to-left 
direction. To prove the converse, assume that 𝐿𝐿(𝛼𝛼 ⊃  𝛽𝛽) ∉  Λ. By 
Lemma 2.13, there is Γ ∈ ℛ(Λ) such that 𝛼𝛼 ∈ Γ and 𝛽𝛽 ∉  Γ. Hence, 
Γ ∈  |𝛼𝛼|0 ∩𝒲𝒲Λ , but Γ ∉  |𝛽𝛽|0 ∩𝒲𝒲Λ . In other words, |𝛼𝛼|Λ  ⊈ |𝛽𝛽|Λ . □ 

 Lemma 2.16. If Γ ∈ 𝒲𝒲Λ  and 𝐿𝐿𝛼𝛼 ∈  Λ, then 𝐿𝐿𝛼𝛼 ∈ Γ. 

 Proof. Follows from Lemmas 2.2 and 2.10. □ 

 Lemma 2.17 (Frame Lemma). For all Λ ∈ 𝒲𝒲0 and Γ ∈ 𝒲𝒲Λ : 

• (c)  If 𝑋𝑋,𝑌𝑌 ∈ 𝒩𝒩Λ(Γ), then 𝑋𝑋 ∩  𝑌𝑌 ∈ 𝒩𝒩Λ(Γ); 
• (t)  If 𝑋𝑋 ∈  𝒩𝒩Λ(Γ), then Γ ∈  𝑋𝑋; 
• (iv)  If 𝑋𝑋 ∈ 𝒩𝒩Λ(Γ), then {Δ ∣∣  𝑋𝑋 ∈ 𝒩𝒩Λ(Δ) } ∈ 𝒩𝒩Λ(Γ). 

Proof. (c) Assume that 𝑋𝑋,𝑌𝑌 ∈ 𝒩𝒩Λ(Γ). Then 𝑋𝑋 =  |𝛼𝛼|Λ and 𝑌𝑌 =  |𝛽𝛽|Λ  
for some 𝑀𝑀𝛼𝛼,𝑀𝑀𝛽𝛽 ∈ Γ. By Lemma 2.12, |𝛼𝛼|0 ∩  |𝛽𝛽|0 ∈ 𝒩𝒩0(Γ). Hence, 
𝑋𝑋 ∩  𝑌𝑌 =  |𝛼𝛼|0 ∩  |𝛽𝛽|0 ∩𝒲𝒲Λ ∈ 𝒩𝒩Λ(Γ). 
 (t) Assume that 𝑋𝑋 ∈ 𝒩𝒩Λ(Γ). Then 𝑋𝑋 =  |𝛼𝛼|0 ∩𝒲𝒲Λ  for some 𝑀𝑀𝛼𝛼 ∈
Γ. By Lemma 2.10 and axiom (B1), 𝛼𝛼 ∈ Γ, i.e. Γ ∈  |𝛼𝛼|0. Consequently, 
Γ ∈  𝑋𝑋. 
 (iv) Assume that 𝑋𝑋 ∈ 𝒩𝒩Λ(Γ). Then 𝑋𝑋 =  |𝛼𝛼|0 ∩𝒲𝒲Λ  for some 
𝑀𝑀𝛼𝛼 ∈ Γ. By Lemma 2.10 and axiom (B4), 𝑀𝑀𝑀𝑀𝛼𝛼 ∈ Γ. Now assume that 
{Δ ∣∣  𝑋𝑋 ∈ 𝒩𝒩Λ(Δ) } ∉ 𝒩𝒩Λ(Γ). This means that {Δ ∣∣  𝑋𝑋 ∈ 𝒩𝒩Λ(Δ) } ≠
 |𝛽𝛽|0 ∩𝒲𝒲Λ  for no 𝑀𝑀𝛽𝛽 ∈ Γ. In particular, then, this holds for 𝑀𝑀𝑀𝑀𝛼𝛼. In 
other words,  
 {Δ ∣∣  𝑋𝑋 ∈ 𝒩𝒩Λ(Δ) } ≠  |𝑀𝑀𝛼𝛼|0 ∩𝒲𝒲Λ  
Now there are two cases to check. 
1. There is Δ ∈  𝒲𝒲Λ  such that Δ ∈  |𝑀𝑀𝛼𝛼|0 ∩  𝒲𝒲Λ  but |𝑀𝑀𝛼𝛼|0 ∩𝒲𝒲Λ ∉

𝒩𝒩Λ(Δ). The latter means that |𝛼𝛼|Λ ≠  |𝛽𝛽|Λ  for no 𝑀𝑀𝛽𝛽 ∈ Δ. But 
𝑀𝑀𝛼𝛼 ∈ Δ, so the assumption entails that |𝛼𝛼|Λ ≠  |𝛼𝛼|Λ . Contradiction. 
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2. There is Δ ∈ 𝒲𝒲Λ  such that |𝑀𝑀𝛼𝛼|0 ∩𝒲𝒲Λ ∈ 𝒩𝒩Λ(Δ) but Δ ∉  |𝑀𝑀𝛼𝛼|0 ∩
𝒲𝒲Λ . In other words, |𝛼𝛼|Λ =  |𝛽𝛽|Λ  for some 𝑀𝑀𝛽𝛽 ∈ Δ, but 𝑀𝑀𝛼𝛼 ∉ Δ. 
The former entails, by Lemma 2.15, that 𝐿𝐿 (𝛼𝛼 ⊃ 𝛽𝛽) ∧  𝐿𝐿(𝛽𝛽 ⊃ 𝛼𝛼) ∈
 Λ. By Lemma 2.16, 𝐿𝐿(𝛽𝛽 ⊃ 𝛼𝛼) ∈ Δ. But then, by Lemma 2.10 and 
axiom (C), 𝑀𝑀𝛽𝛽 ⊃  𝑀𝑀𝛼𝛼 ∈ Δ. Consequently, 𝑀𝑀𝛼𝛼 ∈ Δ. Contradiction. □ 

Lemma 2.18 (Model Lemma). For all Λ ∈ 𝒲𝒲0 and Γ ∈ 𝒲𝒲Λ ,𝛼𝛼 ∈ Γ iff 
ℳΛ , Γ ⊨ 𝛼𝛼. 

Proof. We need to check that 𝛼𝛼 ∈ Γ iff the truth-condition for 𝛼𝛼 is 
satisfied with respect to Γ. The proof is by induction on the complexity 
of 𝛼𝛼. The base case 𝛼𝛼 = 𝑝𝑝 holds by definition. The cases of ∼ and ∧ are 
easy (and standard) and we omit them. Only the ‘modal’ cases are 
checked explicitly. 
 We check that 𝐿𝐿𝛼𝛼 ∈ Γ iff ℳΛ ,Δ ⊨ 𝛼𝛼 for all Δ ∈ 𝒲𝒲Λ . The right-
hand side is equivalent to the claim that α ∈ Δ for all Δ ∈ 𝒲𝒲Λ  by the 
induction hypothesis. Now the left-to-right implication is an obvious 
consequence the definition of 𝒲𝒲Λ . The right-to-left implication follows 
from Lemma 2.13 and the definition of 𝑊𝑊Λ . 
 Next, we check that 𝑀𝑀𝛼𝛼 ∈ Γ iff there is an 𝑋𝑋 ∈  𝒩𝒩Λ(Γ) such that 
𝑋𝑋 ⊆  |𝛼𝛼|Λ . If 𝑀𝑀𝛼𝛼 ∈ Γ, then |𝛼𝛼|0 ∈ 𝒩𝒩0(Γ) and, hence, |𝛼𝛼|0 ∩𝒲𝒲Λ ∈
𝒩𝒩Λ(Γ). Conversely, if there is 𝑋𝑋 ∈  𝒩𝒩Λ(Γ) such that 𝑋𝑋 ⊆  |𝛼𝛼|Λ , then 
𝑋𝑋 = |𝛽𝛽|Λ  for some 𝑀𝑀𝛽𝛽 ∈ Γ. 𝑀𝑀𝛼𝛼 ∈ Γ follows by Lemmas 2.15 and 
2.16. □ 

 The Frame and Model Lemmas ensure that every canonical Λ-model is 
a model and that membership in Γ is equivalent to truth in Γ. 
Completeness follows immediately. 

Theorem 2.19 (Strong Completeness). Let Θ be any set of formulas. If 
Θ ℱ-entails 𝛼𝛼 for every ℱ, then 𝛼𝛼 is derivable from Θ in AM4. 

Proof. Assume that 𝛼𝛼 is not derivable from Θ. Then the set Θ ∪ {∼ 𝛼𝛼} 
is consistent. By Lindenbaum’s Lemma, there is an AM4-set Λ ⊇ Θ ∪
{~𝛼𝛼}. Construct the Λ-canonical model ℳΛ . By Lemmas 2.17 and 2.18, 
there is a model ℳ (namely ℳΛ) and a world 𝑤𝑤 (namely Λ) such that 
ℳ,𝑤𝑤 ⊨ 𝛽𝛽 for every 𝛽𝛽 ∈ Θ, but ℳ,𝑤𝑤 ⊭  𝛼𝛼. Hence, Θ does not ℱ-entail 
𝛼𝛼 for all ℱ. □ 
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2.4. Cmorej’s Results, Semantically 

 A direct consequence of the Completeness Theorem is that Cmorej’s 
results may be established by using simple model-theoretic arguments.  
 Assume that (1) is not provable. Then, by the Completeness Theorem, 
there is a model ℳ and a world 𝑤𝑤 such that 𝑀𝑀 𝑀𝑀(𝛼𝛼 ∧ ~𝑀𝑀𝛼𝛼) is true in 𝑤𝑤. 
But then, by the truth-condition for 𝐿𝐿, 𝑀𝑀 (𝛼𝛼 ∧ ~𝑀𝑀𝛼𝛼) is true in some 𝑢𝑢 in 
the model ℳ. Soundness and (B2) imply that 𝑀𝑀𝛼𝛼 ∧ 𝑀𝑀~𝑀𝑀𝛼𝛼 holds in 𝑢𝑢 and 
(B1) leads to the contradiction that 𝑀𝑀𝛼𝛼 ∧ ~𝑀𝑀𝛼𝛼 holds in 𝑢𝑢. 
 The provability of (2) is a direct consequence of the provability of (1). If 
the schema (1) is valid then so is ~𝑀𝑀𝑀𝑀(~𝛼𝛼 ∧ ~𝑀𝑀~𝛼𝛼) and, by Lemma 2.3, 
~𝑀𝑀𝑀𝑀~(𝛼𝛼 ∨ 𝑀𝑀~𝛼𝛼) is valid as well. 
 Now assume that (3) is false in some ℳ,𝑤𝑤. Hence, 𝐿𝐿~𝑀𝑀 𝛼𝛼 ∧  𝑀𝑀~(𝛼𝛼 ≡
 (𝛼𝛼 ∧ ~𝑀𝑀𝛼𝛼)) is true in 𝑤𝑤. This means that there is some 𝑢𝑢 in ℳ such that 
~𝑀𝑀𝛼𝛼 ∧ ~(𝛼𝛼 ≡  (𝛼𝛼 ∧ ~𝑀𝑀 𝛼𝛼 )) holds in 𝑢𝑢. But this is impossible, since the 
latter formula is a substitution instance of a contradiction of classical 
propositional logic. 
 Finally, assume that (4) is false in ℳ,𝑤𝑤. Then 𝐿𝐿~𝑀𝑀𝛼𝛼 ∧  𝑀𝑀(𝛼𝛼 ∧  𝑀𝑀𝑀𝑀 𝛼𝛼) 
in 𝑤𝑤. By Lemma 2.2 and Soundness, 𝐿𝐿~𝑀𝑀 𝛼𝛼 ∧ 𝛼𝛼 ∧  𝑀𝑀 𝑀𝑀 𝛼𝛼 in 𝑢𝑢. Contradic-
tion. The nature of the latter two arguments suggests that the results 
concerning (3) and (4) are independent of any assumptions concerning 𝑀𝑀. 
We will return to this point in Section 4. 

3. Unverifiability, absurdity, and unknowability 

 This section links Cmorej’s results to two well-known philosophical 
problems, Moore’s Paradox and the Knowability Paradox. Our sole aim is 
to point out some similarities between Cmorej’s findings and the two 
paradoxes without going into philosophical detail. 
 Cmorej’s main result is that 

 (5)  𝑝𝑝 ∧ ~𝑀𝑀 𝑝𝑝, 

as well as all its substitution instances, is provably unverifiable. (5) is similar 
in form to so-called (omissive) Moorean sentences, i.e. sentences of the form 

 (6)  𝑝𝑝 and I do not believe that  𝑝𝑝, 
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with ‘I believe that’ replaced by ‘It is verified that’. Moorean sentences and 
the air of absurdity surrounding them are at the heart of a famous problem, 
known as Moore’s Paradox. Green and Williams explain that  

G.E. Moore observed that to say, ‘I went to the pictures last Tuesday 
but I don’t believe that I did’ would be ‘absurd’ (1942, 53). Over half  
a century later, such sayings continue to perplex philosophers and other 
students of language, logic, and cognition. On the one hand, such 
sayings seem distinct from semantically odd Liar-type sayings such as 
‘What I’m now saying is not true’. Unlike Liar-type sentences, what 
Moore said might be true: One can readily imagine a situation in which 
Moore went to the pictures last Tuesday but does not believe that he 
did so. On the other hand, it does seem absurd to assert a proposition 
while, with no apparent change of mind, or aside to a different 
audience, going on to deny that one believes it. It seems no less absurd 
to judge true the following proposition: p and I do not believe that p. 
(Green – Williams 2007, 3; original emphasis) 

 (5) may itself be labelled as ‘absurd to utter’ or ‘absurd to judge true’. 
Assume that I assert that 𝑝𝑝 and that 𝑝𝑝 is not verified at the same time. It 
seems, then, that my assertion implies that it lacks appropriate grounds: If 
the assertion is true, then one of the statements being asserted is 
unverified. But on what grounds is it asserted, then? 
 Cmorej’s result concerning (1) can be construed as providing an 
explanation of the air of absurdity surrounding (5): (5) is unverifiable and, 
therefore, un-𝑋𝑋-able for every 𝑋𝑋 that requires verification.4

On this account, Cmorej’s result implies that propositions of the form (7) 
are unknowable. This observation is, of course, at the heart of another 

 This expla-
nation is similar in spirit to Hintikka’s (1962, 52-54) solution to Moore’s 
Paradox, who argues that it is impossible for the speaker to believe (6). 
 Nevertheless, belief may be thought to be far too distant in nature from 
verification to ground any comparisons of Cmorej’s (5) to the Moorean (6). 
Verification, it might be argued, is closer to (empirical) knowledge. Hence, 
it may seem more plausible to construe (5) along the lines of 

 (7)  𝑝𝑝 and it is not known that  𝑝𝑝 

                                                      
4  In the sense that if some 𝑝𝑝 is 𝑋𝑋-ed then 𝑝𝑝 is verified. 
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famous problem, the Knowability Paradox due to Frederic Fitch and Alonzo 
Church (see Fitch 1963; Salerno 2009). Its gist is that the plausible 
assumption that every truth is knowable entails the ridiculous conclusion 
that every truth is known. For assume that every truth is knowable. Then, 
given the fact that (7) is unknowable, (7) is false. In other words ‘If 𝑝𝑝, then 
it is known that 𝑝𝑝’ is true. But 𝑝𝑝 is arbitrary, so the claim holds for every 𝑝𝑝, 
i.e. every truth is known. 

4. Independence results 

 This section is devoted to showing that the results concerning (1) and 
(2) are independent of the results concerning (3) and (4), and that the 
latter two are independent of any assumptions concerning the notion of 
verification. Consequently, the results concerning (1) and (2) are 
generalised, i.e. shown to hold for weaker notions of verification, and the 
results concerning (3) and (4) are shown to hold for every unary operator in 
place of 𝑀𝑀 whatsoever.  
 The results are established as follows. Firstly, in section 4.1 we 
formulate AM1, a bi-modal logic for 𝐿𝐿 and 𝑀𝑀 that is rather weaker than 
AM4, but validates (1) and (2) without validating (3) or (4). Secondly, in 
section 4.2 we formulate another bi-modal logic AM0 with some very weak 
assumptions concerning 𝐿𝐿 and no assumptions concerning 𝑀𝑀 at all, and 
show that the logic validates (3) and (4) without validating (1) or (2). 
Section 4.3 provides some additional remarks. We note that both AM1 and 
AM0 will be formulated semantically, i.e. as sets of formulas valid in a class 
of frames. Axiom systems will be mentioned, but completeness will not be 
proved. The reason is that both completeness arguments are simple 
exercises extending the standard completeness proofs for ‘classical’ logics 
(see Chellas 1980).  

4.1. (1) and (2) without (3) or (4) 

 AM1 will be defined as a set of formulas valid in a special class of bi-
neighbourhood frames. Hence, we shall use neighbourhood models where 
both operators 𝐿𝐿 and 𝑀𝑀 are given truth-conditions in terms of neighbour-
hood functions. As a result, 𝐿𝐿 in AM1 is a non-normal modality.  
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 Definition 4.1 (AM1-Frames and Models). An AM1-frame is a triple  

  ℱ = 〈 𝒲𝒲,𝒩𝒩𝐿𝐿 ,𝒩𝒩𝑀𝑀  〉 

where 𝒲𝒲 is a non-empty set (interpreted as before) and both 𝒩𝒩𝐿𝐿 ,𝒩𝒩𝑀𝑀  are 
functions from 𝒲𝒲 to subsets of the power-set of 𝒲𝒲. It is assumed that 
(for all 𝑤𝑤) 

• (l) 𝒲𝒲 ∈ 𝒩𝒩𝐿𝐿(𝑤𝑤); 
• (m)  For all 𝑍𝑍 and all 𝑋𝑋 ∈ 𝒩𝒩𝑀𝑀(𝑤𝑤), if 𝑋𝑋 ⊆  𝑍𝑍, then for all 𝑌𝑌 ∈ 𝒩𝒩𝑀𝑀(𝑤𝑤), 

there is 𝑢𝑢 ∈  𝑌𝑌 and some 𝑈𝑈 ∈ 𝒩𝒩𝑀𝑀(𝑢𝑢) such that 𝑈𝑈 ⊆  𝑍𝑍, for 
some 𝑈𝑈. 

An AM1-model is an AM1-frame with a valuation, i.e. ℳ = 〈 ℱ,𝒱𝒱 〉. 
Truth-sets are defined as before, with the exception of 

 |𝐿𝐿𝛼𝛼|ℳ  = { 𝑤𝑤 ∣  |𝛼𝛼|ℳ ∈ 𝒩𝒩𝐿𝐿(𝑤𝑤)}. 

(𝑀𝑀𝛼𝛼 is dealt with as before, but in terms of 𝒩𝒩𝑀𝑀 .) Validity is defined as 
usual. AM1 is the set of formulas valid in every AM1-frame. ∎ 

 𝒩𝒩𝐿𝐿(𝑤𝑤), the set of 𝐿𝐿-neighbourhoods of 𝑤𝑤, is seen as the set of 
propositions necessary at 𝑤𝑤. It is assumed only that the ‘maximal 
proposition’ 𝒲𝒲 is always necessary (l). The condition (m) might seem 
confusing, but its role is made clear by the proof of the following fact. 

Fact 4.2. If 𝛼𝛼 ∈  AM1, then 𝐿𝐿𝛼𝛼 ∈ AM1. Moreover, every formula of the 
form  

 𝑀𝑀~𝑀𝑀 𝛼𝛼 ⊃ ~𝑀𝑀𝛼𝛼  

 belongs to AM1. 

Proof. Assume that 𝛼𝛼 ∈ AM1 and take any ℳ,𝑤𝑤. It follows that 
|𝛼𝛼|ℳ  = 𝒲𝒲. Consequently, |𝛼𝛼|ℳ ∈ 𝒩𝒩𝐿𝐿(𝑤𝑤) and, hence, 𝐿𝐿𝛼𝛼 is true in 𝑤𝑤. 
By propositional logic, 𝑀𝑀~𝑀𝑀𝛼𝛼 ⊃ ~𝑀𝑀 𝛼𝛼 is equivalent to 𝑀𝑀𝛼𝛼 ⊃ ~ 𝑀𝑀~𝑀𝑀 𝛼𝛼. 
Now assume that ℳ,𝑤𝑤 ⊨  𝑀𝑀𝛼𝛼. We have to show that ℳ,𝑤𝑤 ⊨ ~𝑀𝑀~𝑀𝑀𝛼𝛼. 
Assume that this is not the case (indirect assumption). The first 
assumption entails that there is 𝑋𝑋 ∈ 𝒩𝒩𝑀𝑀(𝑤𝑤) such that 𝑋𝑋 ⊆  |𝛼𝛼|. The 
indirect assumption entails that there is 𝑌𝑌 ∈ 𝒩𝒩𝑀𝑀(𝑤𝑤) such that 𝑌𝑌 ⊆
|~𝑀𝑀𝛼𝛼|. In other words, for all 𝑢𝑢 ∈  𝑌𝑌 and all 𝑈𝑈 ∈ 𝒩𝒩𝑀𝑀(𝑢𝑢), 𝑈𝑈 ⊈ |𝛼𝛼|. But 
this is precisely the negation of our condition (m). □ 
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 It is easy to show that the only non-tautologous axiom schema of AM4 
that belongs to AM1 is (B2). This is done by constructing countermodels 
for all other axiom schemas. We give one example and leave the rest to the 
reader as an exercise.  

Example 4.3. Let 𝒲𝒲 =  { 𝑣𝑣,𝑢𝑢 } and |𝑝𝑝|  = { 𝑢𝑢}. Moreover, let 
{{𝑣𝑣,𝑢𝑢}, { 𝑢𝑢}} (∅) by the value of 𝒩𝒩𝐿𝐿(𝑥𝑥) (𝒩𝒩𝑀𝑀(𝑥𝑥)) for every 𝑥𝑥 ∈ 𝒲𝒲. It is 
easily checked that both (l) and (m) are satisfied. Moreover, 𝐿𝐿𝑝𝑝 holds in 
𝑣𝑣. However, 𝑝𝑝 is false in 𝑣𝑣. The axiom schema (A1) fails as 𝑝𝑝 is 
necessary but not true in some world of some model. ∎ 

 To facilitate comparison with AM4, we state (without proof) the 
following axiomatization result. 

Proposition 4.4. AM1 is soundly and completely axiomatized by the 
following axiom system. Every tautologous formula is an axiom and, 
moreover, every formula of the form 

 (B1’) 𝑀𝑀~𝑀𝑀 𝛼𝛼 ⊃ ~𝑀𝑀𝛼𝛼 
 (B2) 𝑀𝑀(𝛼𝛼 ∧ 𝛽𝛽) ⊃  (𝑀𝑀𝛼𝛼 ∧ 𝑀𝑀𝛽𝛽) 

is an axiom as well. The rules of inference are Modus Ponens, 𝐿𝐿-Necessi-
tation and 

 (RE) If ⊢  𝛼𝛼 ≡  𝛽𝛽, then ⊢  𝑋𝑋𝛼𝛼 ≡  𝑋𝑋𝛽𝛽, where 𝑋𝑋 is 𝐿𝐿 or 𝑀𝑀. 

Note that (B1’) is a weak version of the axiom (B1), which is stating that 
every verified proposition is true. (B1’) requires only that every verified 
proposition of the form ~𝑀𝑀𝛼𝛼 be true. The main observation is that this 
suffices to validate (1) and (2), while there are AM1-countermodels to both 
(3) and (4). 

 Proposition 4.5. (1) and (2) are valid in AM1, but (3) and (4) are not. 

Proof. (1) Fact 4.2 and propositional logic entail that  

(𝑀𝑀𝛼𝛼 ∧  𝑀𝑀~𝑀𝑀𝛼𝛼) ⊃ ~(𝑀𝑀𝛼𝛼 ∧ 𝑀𝑀~𝑀𝑀𝛼𝛼)  

belongs to AM1. But (B2) is valid and, hence,  

𝑀𝑀(𝛼𝛼 ∧ ~𝑀𝑀𝛼𝛼) ⊃ ~𝑀𝑀 (𝛼𝛼 ∧ ~𝑀𝑀𝛼𝛼) 
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is in AM1, which, by propositional logic, means that ~𝑀𝑀(𝛼𝛼 ∧ ~𝑀𝑀𝛼𝛼) 
belongs to AM1. By Fact 4.2 again, 𝐿𝐿~𝑀𝑀(𝛼𝛼 ∧ ~𝑀𝑀𝛼𝛼) belongs to AM1. 
 (2) From the validity of (1) by propositional logic and repeated 
applications of (semantic counterparts of) the rule (RE). 
 (3) Our countermodel is as follows. 𝒲𝒲 = { 𝑣𝑣,𝑢𝑢} and 𝒩𝒩𝑀𝑀(𝑥𝑥)  = {{𝑣𝑣}} 
for all 𝑥𝑥 ∈ 𝒲𝒲;𝒩𝒩𝐿𝐿(𝑣𝑣)  = {∅,𝒲𝒲} and 𝒩𝒩𝐿𝐿(𝑢𝑢)  = {𝒲𝒲};  |𝑝𝑝|  = {𝑣𝑣}. It is 
readily seen that this is indeed an AM1-model (the key to (m) is that 
𝒩𝒩𝑀𝑀(𝑥𝑥) is the same singleton for all 𝑥𝑥 ∈ 𝒲𝒲). Obviously, |𝑀𝑀𝑝𝑝| =
𝒲𝒲, |~𝑀𝑀𝑝𝑝|  = ∅ and |~(𝑝𝑝 ∧  𝑀𝑀 𝑝𝑝)|  = {𝑢𝑢}. Consequently, 𝐿𝐿~𝑀𝑀𝑝𝑝 holds in 
𝑣𝑣 (as ∅ ∈ 𝒩𝒩𝐿𝐿(𝑣𝑣)), but 𝐿𝐿~(𝑝𝑝 ∧  𝑀𝑀𝑝𝑝) does not hold in 𝑣𝑣 (as {𝑢𝑢} ∉ 𝒩𝒩𝐿𝐿(𝑣𝑣)). 
But, as is easily checked, 𝐿𝐿~𝑀𝑀𝑝𝑝 ∧ ~𝐿𝐿~(𝑝𝑝 ∧  𝑀𝑀𝑝𝑝) entails the negation of 
(3). 
 (4) The countermodel is just like the countermodel to (3) except for 
|𝑝𝑝|  = { 𝑢𝑢, 𝑣𝑣}. It is easily checked that, as before, |~𝑀𝑀𝑝𝑝|  = ∅ and, 
moreover, |~𝐿𝐿~ 𝑀𝑀𝑝𝑝|  = {𝑢𝑢}. Hence, |~(𝑝𝑝 ∧ ~𝐿𝐿~𝑀𝑀𝑝𝑝) |  = {𝑣𝑣}. But this 
means that, as before, 𝐿𝐿~𝑀𝑀𝑝𝑝 holds in 𝑣𝑣. However, as {𝑣𝑣} ∉ 𝒩𝒩𝐿𝐿(𝑣𝑣), 
𝐿𝐿~(𝑝𝑝 ∧  𝑀𝑀 𝑀𝑀𝑝𝑝) is false in 𝑣𝑣. Consequently, (4) is false in 𝑣𝑣.□ 

 Proposition 4.5 generalises Cmorej’s results concerning (1) and (2). It 
shows that the original results can be obtained by building on assumptions 
concerning the notions of verification and necessity that are far weaker that 
the ones originally used by Cmorej. The second upshot is that the results 
concerning (1) and (2) are independent of those concerning (3) and (4). In 
other words, one may construe ‘verified’ and ‘necessary’ in such a manner 
that 𝛼𝛼 ∧ ~𝑀𝑀𝛼𝛼 turns out to be ‘unverifiable’ (and 𝛼𝛼 ∨  𝑀𝑀𝛼𝛼 to be 
‘unsatisfiable’), but not every ‘unverifiable’ 𝛼𝛼 is logically equivalent to 
𝛼𝛼 ∧ ~𝑀𝑀𝛼𝛼 and not every ‘unverifiable’ 𝛼𝛼 entails a proposition that says that 𝛼𝛼 
is ‘unverifiable’. 

4.2. (3) and (4) without (1) or (2) 

 The logic AM0 is defined similarly as AM1. 

Definition 4.6 (AM0-Frames and Models). An AM0-frame is a couple  

ℱ = 〈 𝒲𝒲,𝒩𝒩 〉  

where all the components are as before, but only one condition is 
enforced: 
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• (iv) If 𝑋𝑋 ∈ 𝒩𝒩(𝑤𝑤), then { 𝑣𝑣 ∣  𝑋𝑋 ∈ 𝒩𝒩(𝑣𝑣) } ∈ 𝒩𝒩(𝑤𝑤). 

An AM0-model ℳ = 〈 ℱ,𝒱𝒱 〉, as before. The truth-sets for Boolean 
formulas are defined as usual. Moreover: 

• |𝑀𝑀𝛼𝛼|ℳ is arbitrary; 
• |𝐿𝐿𝛼𝛼|ℳ  = {𝑤𝑤 ∣  𝑋𝑋 ⊆  |𝛼𝛼|ℳ  for some 𝑋𝑋 ∈ 𝒩𝒩(𝑤𝑤)}. 

AM0 is defined as the set of formulas valid in every AM0-frame. ∎ 

 In AM0, 𝐿𝐿 takes the place of 𝑀𝑀 and is given a truth-condition in terms 
of a neighbourhood function. It is the same truth-condition that was given 
to 𝑀𝑀 in the semantics for AM4, but fewer restrictions ale placed on 𝒩𝒩. 
The absence of any specific truth-condition for formulas of the form 𝑀𝑀𝛼𝛼 
reflects the absence of any assumptions concerning the notion of 
verification. A formal consequence of this absence is that formulas of the 
form 𝑀𝑀𝛼𝛼 behave like propositional variables. Of course, substitution of 
equivalents then fails. 𝛼𝛼 is necessary in 𝑤𝑤 iff it ‘follows from’ some 
proposition in 𝒩𝒩𝐿𝐿(𝑤𝑤), the set of ‘core necessities’ of 𝑤𝑤. 

 Fact 4.7. The following schemas belong to AM0: 

• 𝑀𝑀𝑀𝑀𝛼𝛼 ⊃  𝑀𝑀𝛼𝛼 
• 𝑀𝑀(𝛼𝛼 ∧ 𝛽𝛽) ⊃ 𝑀𝑀𝛼𝛼 

 Moreover, if 𝛼𝛼 ⊃ 𝛽𝛽 belongs to AM0, then so does 𝐿𝐿𝛼𝛼 ⊃ 𝐿𝐿𝛽𝛽. 

Proof. The first validity is a consequence of (iv). Note that 𝑀𝑀𝑀𝑀𝛼𝛼 ⊃ 𝑀𝑀𝛼𝛼 
belongs to AM0 if 𝐿𝐿𝛼𝛼 ⊃ 𝐿𝐿𝐿𝐿𝛼𝛼 does. It is routine to check that (iv) 
ensures that the latter in fact belongs to AM0. The second validity 
follows from the truth-conditions for 𝐿𝐿𝛼𝛼 and 𝐿𝐿(𝛼𝛼 ∧  𝛽𝛽). The final claim 
is a standard consequence of the truth-condition for 𝐿𝐿𝛼𝛼 (see Chellas 
1980). □ 

 We skip the examples of AM0-models and the arguments that most 
AM4-axioms are not valid in AM0. To facilitate comparison with AM4, 
however, we state (without proof) the following axiomatization result. 

Proposition 4.8. AM0 is soundly and completely axiomatized by the 
following axiom system. Every tautologous formula is an axiom and, 
moreover, every formula of the form 
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 (A2’) 𝐿𝐿(𝛼𝛼 ∧ 𝛽𝛽) ⊃ (𝐿𝐿 𝛼𝛼 ∧ 𝐿𝐿 𝛽𝛽) 
 (A4) 𝐿𝐿𝛼𝛼 ⊃ 𝐿𝐿𝐿𝐿𝛼𝛼  

 is an axiom as well. The rules of inference are Modus Ponens and 

 (REL) If ⊢ 𝛼𝛼 ≡ 𝛽𝛽, 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 ⊢  𝐿𝐿𝛼𝛼 ≡  𝐿𝐿𝛽𝛽. 

The main observation is that AM0 validates (3) and (4), but not so for (1) 
and (2). 

 Proposition 4.9. (3) and (4) are valid in AM0, but (1) and (2) are not. 

Proof. (3) is quite easy. Note (again) that  

~𝑀𝑀𝛼𝛼 ⊃ (𝛼𝛼 ≡  (𝛼𝛼 ∧ ~𝑀𝑀𝛼𝛼))  

is a tautologous formula. The rest follows by Fact 4.7. 
 (4) 𝑀𝑀𝑀𝑀𝑀𝑀𝛼𝛼 ⊃  𝑀𝑀𝑀𝑀𝛼𝛼 and 𝑀𝑀(𝛼𝛼 ∧  𝑀𝑀𝑀𝑀𝛼𝛼) ⊃  𝑀𝑀𝑀𝑀𝑀𝑀𝛼𝛼 are valid by Fact 
4.7. It follows by propositional logic that  

𝑀𝑀(𝑝𝑝 ∧  𝑀𝑀𝑀𝑀𝑝𝑝) ⊃ 𝑀𝑀𝑀𝑀𝛼𝛼  

is valid in AM0. The rest follows by propositional logic and the 
definition of 𝑀𝑀. 
 (1) and (2) are very easy. Formulas of the form 𝑀𝑀𝛼𝛼 have arbitrary 
truth-sets. Hence, we can easily construct a model over 𝒲𝒲 = { 𝑣𝑣,𝑢𝑢} 
such that |~𝑀𝑀(𝑝𝑝 ∧ ~𝑀𝑀𝑝𝑝)|  = {𝑣𝑣} and |~𝑀𝑀~(𝑝𝑝 ∨ 𝑀𝑀~𝑝𝑝)|  = { 𝑢𝑢}, but 
𝒩𝒩(𝑣𝑣)  = {{𝑣𝑣,𝑢𝑢}}, for example. But then both 𝐿𝐿~𝑀𝑀(𝑝𝑝 ∧ ~𝑀𝑀𝑝𝑝) and 
𝐿𝐿~𝑀𝑀~(𝑝𝑝 ∨  𝑀𝑀~𝑝𝑝) are false in 𝑣𝑣. □ 

 Proposition 4.9 shows that Cmorej’s results concerning (3) and (4) are 
obtainable rather easily. In fact, they follow from two very weak 
assumptions concerning necessity and are independent of any specific 
interpretation of the operator ‘𝑀𝑀’. 

4.3. Additional remarks 

 The results of the above two sections suggest that AM4 is not the 
weakest possible logic of necessity and verification for which Cmorej’s 
results are derivable. Let us consider AM2, the combination of AM0 and 
AM1. We could discuss its semantics in terms of 𝒩𝒩𝐿𝐿 and 𝒩𝒩𝑀𝑀 , but we only 
mention the corresponding axiom system. As usual, every tautologous 
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formula is an axiom and Modus Ponens is a rule of inference. The 
additional axiom schemata are (B1’), (B2), (A2’) and (A4). Additional 
inference rules are (RE) and 𝐿𝐿-necessitation. It is clear that AM2 is weaker 
that AM4, but all of (1) – (4) are valid in AM4. Hence, Cmorej’s original 
system is not the weakest one for which his main results hold. 
 Let us note that the converses of (3) and (4) are derivable in AM0.3,  
a system that results from AM0 by adding (A1) and (B1). (Again, providing 
a semantics for this system is easy.) Let us see why. 
 Firstly, if both (A1) and (B1) are valid, then so is  

 𝑀𝑀𝛼𝛼 ⊃ (𝛼𝛼 ∧  𝑀𝑀𝑀𝑀𝛼𝛼) 

But then, by Fact 4.7 (which obviously holds for AM0.3 as well),  

 𝑀𝑀𝑀𝑀 𝛼𝛼 ⊃ 𝑀𝑀(𝛼𝛼 ∧ 𝑀𝑀𝑀𝑀𝛼𝛼) 

is valid. The validity of the converse of (4) follows by propositional logic 
and the definition of 𝑀𝑀. Secondly, let us assume that 𝑀𝑀𝑀𝑀𝛼𝛼 holds in some 
world 𝑤𝑤 for some 𝛼𝛼. Then 𝑀𝑀(𝛼𝛼 ∧  𝑀𝑀𝛼𝛼) holds in 𝑤𝑤 by (B1). By proposi-
tional reasoning and (REL), 𝑀𝑀(𝛼𝛼 ∧ ~(𝛼𝛼 ∧ ~𝑀𝑀𝛼𝛼)). Consequently,  

 𝑀𝑀 ��𝛼𝛼 ∧ ~(𝛼𝛼 ∧ ~𝑀𝑀 𝛼𝛼)� ∨ �(𝛼𝛼 ∧ ~𝑀𝑀 𝛼𝛼) ∧ ~𝛼𝛼�� 

in 𝑤𝑤. But the latter means that ~𝐿𝐿 (𝛼𝛼 ≡  (𝛼𝛼 ∧ ~𝑀𝑀𝛼𝛼)) in 𝑤𝑤.  
 Hence, a system in which all of (1) – (4) plus the converses of (3) and 
(4) hold is the combination of AM0.3 with AM2, which we can call AM3. 
(In an axiomatization of AM3, (B1’) can be omitted in favour of (B1).) 
Again, it is rather clear that AM3 is weaker that AM4. This could be 
shown rigorously by model-theoretic arguments, but we shall not engage in 
this exercise here. 

5. Conclusion 

 The present article has elaborated on Cmorej’s (1990) interesting 
results concerning unverifiable and unfalsifiable empirical propositions in 
three ways. Firstly, we have provided simple model-theoretic arguments 
establishing the main results with respect to the logic AM4. This was 
made possible by our soundness and completeness results for AM4 using  
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a version of neighbourhood semantics. Secondly, we have pointed out some 
striking similarities of Cmorej’s findings to aspects of two well-known 
philosophical problems, Moore’s Paradox and the Knowability Paradox. 
Thirdly, we have generalised Cmorej’s results and discussed logics weaker 
that AM4 in which some combinations of the results hold. It has been 
argued that, in fact, AM4 is not the weakest logic in which all of Cmorej’s 
original results hold. Perhaps AM4 is to be preferred to such weaker logics 
on some other grounds, but we leave this issue open. 
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