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ABSTRACT: The subject of this paper is the notion of similarity between the actual 
and impossible worlds. Many believe that this notion is governed by two rules. Ac-
cording to the first rule, every non-trivial world is more similar to the actual world 
than the trivial world is. The second rule states that every possible world is more 
similar to the actual world than any impossible world is. The aim of this paper is to 
challenge both of these rules. We argue that acceptance of the first rule leads to the 
claim that the rule ex contradictione sequitur quodlibet is invalid in classical logic. 
The second rule does not recognize the fact that objects might be similar to one an-
other due to various features. 

KEYWORDS: Counterfactuals – counterpossibles – impossible worlds – possible worlds 
– trivial world.  

1. Introduction  

 It is significant that we make some inferences which are based on what is 
impossible. Consider the following examples:  

 (1)  If Hobbes had squared the circle, then mathematicians would be im-
pressed.  

 (2)  If Hobbes had squared the circle, then mathematicians would not be 
impressed.  
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 (3)  If it were the case that 2 + 2 = 5, then it would not be the case that 
2 + 3 = 5. 

 (4)  If it were the case that 2 + 2 = 5, then it would be the case that 
2 + 3 = 5.  

 Common intuition and practice show that we tend to take (1) and (3) to be 
true and (2) and (4) to be false. Since all of these claims are in the form of 
conditionals, it is reasonable to expect that their truth or fallacy can be ex-
plained in terms of theories of counterfactuals. Unfortunately, according to the 
well-known analysis of worlds semantics, all of them are taken to be vacuously 
true.  
 Because of this, many contemporary philosophers of modality have been 
arguing that a standard analysis of counterfactuals in the framework of possible 
worlds semantics is insufficient when it comes to counterpossibles, i.e., coun-
terfactuals with impossible antecedents.1 As an alternative to the traditional 
approach, they have proposed an extended account that is based on worlds se-
mantics which commits to possible as well as impossible worlds. One of the 
main aims of this extension was to satisfy the need for an explanation of rea-
soning about what is taken to be impossible (see Yagisawa 1988; Mares 1997; 
Nolan 1997; Restall 1997; Vander Laan 1997; 2004). Introducing impossible 
worlds raises many philosophical questions, and even though one can find var-
ious analyses of the logical structure and ontological status of impossible 
worlds and their application, few of these analyses discuss the important notion 
of similarity between worlds.2 The importance of this notion lies in its role, 
which is to determine whether a given counterfactual (with a possible or im-
possible antecedent) is true or false.  
 Although “the discussion developed so far should show that the issue of the 
structure, closeness and ordering of impossible worlds is quite open” (Berto 
2013), there are two claims which are in some sense the core of the standard 
understanding of the notion of similarity. The first one is commonly shared 
among the advocates of impossible worlds; the second one raises some doubts. 
According to the first claim, the trivial world, i.e., the world where everything 

                                                           
1  As ‘standard analysis’ we mean theories delivered by Robert Stalnaker (see Stal-
naker 1968) and David Lewis (see Lewis 1973).  
2  For a comprehensive analysis of the ontological status of impossible worlds, see 
Berto (2013), Nolan (2013).  
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is the case, is the most dissimilar to the actual world (@). In other words, every 
non-trivial world (possible or impossible) is closer (more similar) to the actual 
world than the trivial world is. We will call this claim the Dissimilarity of the 
Trivial World (DTW). The second assumption about similarity and impossible 
worlds is the Strangeness of Impossible Condition (SIC), according to which 
every possible world is closer to the actual world than any impossible world 
is. Both of these claims were formulated by Daniel Nolan (see Nolan 1997). 
Though prima facie both are compelling, we will show the reasons for believ-
ing that a proper analysis of counterfactuals requires that they be rejected.  
 The result of our investigation should be as general as possible, and because 
of this we will not discuss any particular account of the metaphysics of an im-
possible world. The reason for this is that the notion of similarity, which is our 
main concern, is taken to be a part of semantics, and not of metaphysics of 
impossible worlds. Moreover, DTW and SIC have their advocates among phi-
losophers who take impossible worlds to be concrete, spatiotemporal objects 
(cf. Yagisawa 1988), as well as among those who believe that impossible 
worlds are abstract entities (cf. Nolan 1997). As such, our investigations are in 
an important respect independent of what the metaphysical nature of impossi-
ble worlds is. Nevertheless, we will base our analysis on two heuristic assump-
tions. According to the first one, the actual world is ruled by classical logic. 
The second assumption is that postulating impossible worlds should not lead 
to changes in the logic of the actual world.3 These assumptions will help us 
point to the main concern about DTW. Even though the acceptance of DTW 
has particular consequences for advocates of the two above-mentioned as-
sumptions, we shall see that philosophers who believe that the actual world is 
ruled by one of the non-classical logics are in no better position.  

2. Counterpossibles  

 Counterpossibles can be represented as sentences of the form: “If it were 
the case that A, then it would be the case that C” (A > C), in which it is stated 
that the truth of an impossible antecedent (A) leads to a given consequent (C). 
Examples were already provided at the very beginning of the text:  

                                                           
3  This view is shared by Daniel Nolan (see Nolan 1997) and David Vander Laan (see 
Vander Laan 1997), among others. 
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 (1)  If Hobbes had squared the circle, then mathematicians would be im-
pressed.  

 (2)  If Hobbes had squared the circle, then mathematicians would not be 
impressed.  

 (3)  If it were the case that 2 + 2 = 5, then it would not be the case that 
2 + 3 = 5.  

 (4)  If it were the case that 2 + 2 = 5, then it would be the case that 
2 + 3 = 5.  

 Each of the above counterfactuals contains impossible (necessarily false) 
antecedents. This means that there are no possible worlds in which these an-
tecedents are true. After all, it is impossible to square the circle, and it is 
impossible that 2 + 2 = 5. According to the standard analysis of counterfactu-
als:  

 (CF) “A > C” is true in @ iff either (a) there is no world where A is true 
or (b) every world w where A and C are true is more similar to the 
actual world than any world w’, where A is true but C is false. 

In virtue of CF, sentences (1)-(4) are true since all of them satisfy condition 
(a). On the contrary, we would rather like to consider only some of them to be 
true and others to be false; for that reason, a more sensitive analysis of their 
truth is required.  
 To solve this problem, many philosophers have argued that one needs to 
invoke impossible worlds, i.e., worlds where what is impossible is true. They 
claim that just as for every possibility there is a possible world which repre-
sents it, then for every impossibility there is an impossible world which repre-
sents what is impossible from the actual world’s point of view (e.g., Yagisawa 
1988). As a consequence, the advocates of impossible worlds postulate worlds 
where, for example, a round square exists, 10 is a prime number, 2 + 2 = 5, it is 
raining and not raining at the same time, etc. 
 To avoid the trivial consequences of postulating worlds where necessarily 
false claims are true, one should assume that impossible worlds are elements 
of other logical spaces than the space of possible worlds. It is worth noting that 
because of this, modal terms should be taken as indexical with respect to given 
logical spaces: What is impossible in our logical space (i.e., in all worlds 
which are ruled by classical logic) is possible in some other logical spaces 
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(e.g., paraconsistent spaces). In this sense, every impossibility is true in some 
world, but that world has to be outside the set of possible worlds. 
 Of course, there is no “equality” between different impossible worlds. 
Some of them are closer (more similar) to the actual world than others. As we 
have already mentioned, there are issues that pertain to determining how to 
measure similarity between worlds. This was not easy in the case of standard 
analysis, and now, when one introduces a plenitude of impossible worlds, it is 
even more puzzling. Nevertheless, it seems that we can point to a claim which 
at least tells us what the most dissimilar world is:  

First, it is intuitive to claim that some impossible worlds are more similar 
to the actual world @ than others. For instance, the explosion world (call it 
e) at which everything is the case, that is, at which every sentence is true, 
seems to be as far from @ as one can imagine, provided one can actually 
imagine or conceive such an extremely absurd situation. Now, pick the im-
possible world, t, at which everything is as in @, except that I wear an im-
possible t-shirt which is white all over and black all over. Intuitively, t is 
closer to @ than e. (Berto 2013)4  

 Regardless of the detailed account of the similarity, the existence of a plen-
itude of possible as well as impossible worlds and their sets allows us to avoid 
the vacuous truth of counterfactuals with necessarily false antecedents. Thanks 
to these, one can easily extend the standard analysis by claiming that since 
every impossibility is true in some of impossible worlds, we can add these 
kinds of worlds to the original analysis:  

 (CF*) “A > C” is true in @ iff every (possible or impossible) world w where 
A and C are true is more similar to the actual world than any world 
w’ where A is true but C is false.  

 This extension should keep the analysis of counterfactuals from being in-
sensitive to the problem of counterpossibles. Sentence (1) is considered to be 
true because there is an impossible world in which the antecedent and the con-
sequent of this counterfactual are both true, and this world is more similar to 
the actual world than any world where the antecedent and consequent of (2) 

                                                           
4  See also Nolan (1997). 
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are true.5 Thanks to this, one can present non-vacuously true reasoning that is 
based on necessarily false claims.  

3. The trivial world  

 The above extension works well for most examples of counterpossibles, 
but it seems that when it comes to the trivial world, troubles arise. Although it 
might be bizarre enough, postulating the existence of this world is the simple 
consequence of the claim that for every impossibility there is a world where 
it is true. If we agree that it is impossible that everything is true, then there 
is an impossible world where everything is true – the trivial world. Since we 
assumed that the actual world is ruled by classical logic, when considering 
the trivial world, it is worth assembling it with one of the fundamental rules 
of this logic, i.e., the so-called Rule of Explosion, also known as ex contra-
dictione sequitur quodlibet (ECQ). It is usually expressed as an implication 
[A ∧ ¬A] → B and states that from contradiction everything follows. The reason 
we mention it here is that there is only one world where B as mentioned above 
is true, and this is the trivial world.  
 Analysis of the relationship between implication and counterfactuals has  
a rich history in the philosophical literature (cf. Bennett 2003, 20-44), but be-
sides the many differences in the various approaches to this issue, lately one 
claim seems to be commonly accepted. It can be expressed as A → B⊢A > B, 
and it states that “any logical truth of the form A → B gives rise to the true 
conditional A > B” (Priest 2009, 331).6 This connection between implication 
and conditionals allows us to consider the following sentences:  

 (5)  If there were a true contradiction, then everything would be the case.  
 (6)  If there were a true contradiction, then (still) not everything would 

be the case.  

 Let us assume that the antecedent and consequent of (5) are true in w1, 
while those of (6) are true in w2. From classical logic’s (i.e., the actual world’s) 

                                                           
5  Similarly in the case of (3) and (4). 
6  See also Gibbard (1981); and Kratzer (2012, 87-9). It should be stressed that this 
does not mean that any true conditional results in a true implication.  
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point of view, the antecedents of both of these counterfactuals express impos-
sibility, so in order to evaluate their truth we should assume that both w1 and 
w2 are impossible worlds. The important difference between them is that w1 is 
the trivial world, whereas w2 is a non-trivial one. Assuming that the actual 
world is ruled by classical logic, we would rather like to admit the truth of (5) 
than of (6). This is so because the first one is just a counterfactually expressed 
ECQ, and as such it tells us what would be the consequence of a true contra-
diction in the actual world, and in any other world in which classical logic is 
valid. If this is truly so, then (according to CF*) we have to admit that w1 is 
more similar to the actual world than w2. But as was stressed above, one of the 
basic assumptions in the theories of impossible worlds is that the trivial world 
is the most dissimilar from the actual world. If we assume DTW and admit that 
the trivial world (w1) is the most dissimilar to the actual world, then w2 is more 
similar than w1. As a result, (6) becomes a true counterfactual and (5) should 
be taken to be false. If (5) is false, then ECQ is false (invalid) as well. In con-
sequence, the analysis of counterpossibles leads to a rejection of one of the 
fundamental rules of classical logic, which means that classical logic is invalid 
in the actual world.  
 This conclusion might lead to at least two consequences. On the one hand, 
we can claim that since DTW leads to falseness of classical logic in the actual 
world, we should reject DTW. In our opinion this is a correct way of addressing 
the above issue. Nevertheless, what for us is a modus tollens, some philoso-
phers might take to be a modus ponens and argue that it is the case that ECQ 
is false in the actual world. This result is consistent with those theories of im-
possible worlds which are based on paraconsistent logic (see Mares 1997; 
Priest 1997; Restall 1997). Although it is one of the interpretations of the con-
cept of an impossible world, it leads to a controversial conclusion: that true 
contradictions are possible. After all, if the actual world is an element of space 
of paraconsistent logic, and every world of this space is a possible one, then it 
is possible that there are true contradictions. Because of this consequence, 
many theorists of impossible worlds would like to avoid changing the logic of 
the actual world in order to deal with impossibilities.  
 Moreover, the problem is more complicated than deciding what the logic 
of the actual world is. As we will see, the question of validity of DTW is in  
a way independent of the question about the logic of the actual world. One 
may argue that taking (5) to be true undermines the impossible worlds anal-
ysis of counterpossibles in general. After all, this entire framework was 
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meant to show some non-vacuously true reasoning based on what is impos-
sible, and (5) shows us that from contradiction everything follows. In this 
sense, every sentence that is both true and false should imply everything, and 
it seems to contradict the basic motivations of introducing impossible worlds 
in the first place. Now the question is: how can one believe in the truth of (5) 
and at the same time make some non-vacuous inferences based on paracon-
sistent logic?  
 To answer this question, we should notice that there is an important differ-
ence between assuming true contradiction in classical logic, on the one hand, 
and contradictions which are true in one of the worlds in the space of paracon-
sistent logic, on the other. When we are thinking about such a contradiction 
which does not lead to the truth of everything, we are considering the last op-
tion. In this sense, every non-vacuously true counterpossible with a contradic-
tion as an antecedent is (implicitly or explicitly) assigned as true in the world 
of paraconsistent logic. Consider the two examples:  

 (7)  If it were raining and not raining at the same time, then everything 
would be the case.  

 (8)  If it were raining and not raining at the same time, then not every-
thing would be the case.  

 Both of these contain impossible antecedents, and it seems that we can find 
two different contexts in which they have different truth values. If we try to 
analyze them with the assumption that classical logic is valid, then (7) would 
be true and (8) would be false, just as in the case above of (5) and (6). On the 
other hand, if the counterfactuals above were preceded by a claim such as “As-
suming the validity of paraconsistent logic, …” then obviously we would say 
that (8) is true and (7) is false. After all, that is what the advocates of paracon-
sistent logic would like to claim. In other words, one can find a reason to be-
lieve that there is a context in which (7) is true and others where it is false. In 
this sense, just because we take (5) to be true does not mean we treat every 
contradiction in the same way; especially not those which are true in a world 
ruled by paraconsistent logic. 
 In virtue of the above, if one either hesitates to admit the truth of (5) and 
the falseness of (6), or one does believe that a change of the logic of the actual 
world would help to save the validity of DTW, one can easily change examples 
(5) and (6) to: 
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 (5*) If classical logic were valid, and if there were a true contradiction, 
then everything would be the case. 

 (6*) If classical logic were valid, and if there were a true contradiction, 
then (still) not everything would be the case. 

 Similarly as our previous examples, both counterfactuals have an impossi-
ble antecedent. Moreover, (5*) corresponds to the trivial world w1, and (6*) 
corresponds to the non-trivial world w2. What differentiates our examples is 
that the antecedent of (5*) and (6*) is impossible regardless of what the logic 
of the actual world is. After all, no matter what the logic of the actual world is, 
the conjunction “classical logic is valid and there are true contradictions” is 
necessarily false. This shows that the consequence of accepting DTW is not 
merely that ECQ is invalid in the actual world, but rather that ECQ is invalid 
in classical logic in general. After all, (5*) expresses one of the basic views 
held by the advocates of classical logic. Obviously, if one believes that the 
actual world is ruled by classical logic, then this implies that ECQ is not valid 
in the actual world. Nevertheless, the problem that we are trying to point to 
does not affect only classical logicians. As (5*) and (6*) show, this problem is 
in an important aspect irrelevant to what the true logic of the actual world is. 
What is important is that according to classical logic, ECQ is a valid principle 
and that the consequence of DTW contradicts this. 

4. Diagnosis  

 It seems that the problem with ECQ and impossible worlds as presented 
above is based on acceptance of the following assumptions:  

 (i)  For every impossibility there is a world that represents this impos-
sibility.  

 (ii)  The valid implication A → C entails the true counterfactual A > C.  
 (iii) The trivial world is the most dissimilar to the actual world (DTW).  

 Because of this, if one would like to save the validity of ECQ in classical 
logic and give an interesting analysis of counterpossibles, one should reject 
one of the above assumptions. Let us consider the reasons for and the conse-
quences of rejecting each of them.  
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 The first assumption expresses the fundamental claim of the advocates of 
impossible worlds. Of course, it may be controversial, and leads to the “incred-
ulous stare”, mostly because it is difficult to conceptualize a world where eve-
rything is true (w1). It is even more complicated to conceptualize worlds where 
classical logic is true, where contradiction is true and where it is not the case 
that everything is true (w2). After all: what does it even mean to say that clas-
sical logic is true in a world where contradiction is true? The truth of one of 
these claims implies the falseness of the other. In this sense, one could say that 
we are in fact neither talking about classical logic nor about contradiction.  
 This objection seems to be the standard reaction to postulating the worlds 
w1 and w2. Someone might say that it is impossible for there to be a world 
where classical logic is true and where contradiction is true as well. Fair 
enough, but let us remember that we are dealing with impossible worlds, and  
a world where classical logic is true and contradiction is true is one of them. 
Because of this, if one would like to exclude the above-mentioned world from 
the modal universe, then there is no reason not to also exclude worlds where  
a round square exists or where 10 is a prime number.7 It is difficult to find  
a reason for which one should accept the existence of a world where a round 
square exists and at the same time reject the existence of a world where classi-
cal logic is true and contradiction is true as well. Just as our understanding of 
a notion of being round excludes being square, our understanding of the notion 
of contradiction excludes the possibility of classical logic being true. As long 
as we accept that there are worlds where round squares exist or where 10 is  
a prime number, there is no reason to exclude worlds such as w1 and w2 from 
our analysis of impossibilities. After all, they represent impossibilities. 
 A possible justification for rejecting (ii) might be that ECQ is a logical law, 
and as such it remains valid in every possible world regardless of the truth 
value of (5) or (6). In this way the falsehood of (5) (or (5*)) would not result 
in the invalidity of ECQ in classical logic. Nevertheless, it seems that (5) ex-
presses exactly the same claim that is expressed in ECQ, so it is difficult to 
imagine what could be a better way of expressing ECQ in the natural language 
than (5) is. As Graham Priest pointed out: “Conditionals may not express laws 

                                                           
7  Naturally one may take this as a reason for rejecting the view that there are impos-
sible worlds. Although most philosophers do not believe in this kind of objects, the 
problem that we are dealing with is addressed to those who believe in a theoretical value 
of impossible worlds’ analyses. 
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of logic; but which conditional holds may certainly depend on logical laws. 
Thus, [A ∧ B] > A since [A ∧ B] entails A” (Priest 2009, 330). Although the re-
jection of (ii) may allow one to avoid the problem that we have presented 
above, it may be considered to be misleading. The only way of taking ECQ to 
be true in the actual world and (5) to be false (and consequently (6) to be true) 
is if we consider the antecedent to be true in a world of paraconsistent logic. 
But as we have seen above, this is clearly not the trivial world, and what we 
are interested in is a world where classical logic is true, contradiction is true 
and where everything is the case, i.e., the trivial world.  
 It seems thus that what is left is to reject (iii). Among (i)-(iii), it is the least 
supported assumption of the analysis of counterpossibles in terms of impossi-
ble worlds. Compared to (i) and (ii), (iii) looks merely like a pre-theoretical 
intuition that is not so well supported by argument. As we know, some of in-
tuitions are simply deceptive. Therefore, it is worth considering an analysis 
towards such a notion of similarity between worlds which will be consistent 
with rejecting the last assumption. Otherwise, we should conclude not only that 
the actual world is a world where classical logic is false, but also that ECQ is 
invalid in classical logic.  
 Surely one could argue that our investigation shows that, actually, (ii) is 
false. It might be argued that since validity is taken to be the truth in every 
possible world, then, when taking into consideration impossible worlds, (ii) 
has no applications anymore. This might be an interesting way of dealing with 
the problem that we are analyzing here; especially for classical logicians who 
would like to deliver an analysis of non-vacuously true counterpossibles and 
save the validity of ECQ at the same time. This may allow one to keep DTW 
as one of the guides for an interpretation of the notion of similarity. Neverthe-
less, what might be a justification for the rejection of DTW is that its problem-
atic consequence is in some sense independent of what the correct logic of the 
actual world is (as (5*) and (6*) show). As such, if the dismissal of DTW would 
help to avoid it, it is worth considering such an interpretation of similarity 
which does not rely on this assumption.  

5. The Strangeness of Impossibility Condition  

 The second of the rules that we are going to challenge is the Strangeness of 
Impossibility Condition (SIC). According to this condition, “any possible 
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world is more similar (nearer) to the actual world than any impossible world” 
(Nolan 1997, 550). In this sense, a world where there is no woodpecker (which 
is a possible world) is more similar to the actual world than a world where  
a round square exists. Contrary to the claim of the dissimilarity of the trivial 
world, SIC is not very widely accepted, and some philosophers doubt its valid-
ity. We will join them here and argue that SIC should not be taken to be a guide 
for understanding the notion of similarity.  
 Let us start with an analogy. Consider three objects: a ball, a tomato and  
a ladder. If one asks “What is more similar to the ball? A tomato or a ladder?”, 
most of us would probably answer “a tomato”. When asked why, we can say 
that both have the same shape. This will make our answer correct, but only if 
we understood the question as “What is more similar to the ball as far as having 
the same shape?” But if one presents the question in a different way, e.g., 
“What is more similar to the ball as far as having the same nature?”, the answer 
would be different. In this case we should say that the ladder is more similar. 
After all, a ladder and a ball are artifacts, while the tomato is not. This shows 
that it is very difficult to think about similarity per se. Usually, our understand-
ing of similarity between objects depends on a chosen feature that we take to 
be the most important. In this sense, each time we compare objects we (either 
in an explicit or implicit way) focus on a given feature. Without this restriction 
the result of such a comparison might be misleading. Similarity understood in 
this way is in fact a ternary relation, S ⟨a, b, F⟩, i.e., object a is similar to object 
b because of factor (property) F. In this sense, two objects are similar with 
respect to property F iff they both have F. A ladder is similar to a ball because 
they are both artifacts, and a tomato is similar to a ball because they are both 
round. By analogy, being more similar (MS) is a quaternary relation MS 
⟨a, b, c, F⟩, which states that because of factor F, object a is more similar to 
object b than object c is.  
 Consider the possible world as mentioned above where there are no 
woodpeckers (but where no circle is a square) and impossible worlds where 
a round square exists (but where woodpeckers also exist). When it comes to 
a lack of round squares (and presumably being possible) we can say that the 
former is more similar to the actual world than the latter. Nevertheless, we 
can also say that, when considering the number of woodpeckers, the last one 
is more similar to the actual world than the first one is. In this sense, the 
similarity between worlds depends on a chosen aspect. If the most important 
feature of a world is to have an adequate number of woodpeckers, and one 
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does not care about geometrical impossibilities, then one can say that there 
is an impossible world that is more similar to the actual world than one of 
the possible worlds is.  
 Someone who would like to save the validity of SIC might argue that the 
most important feature of a world is whether it is possible or impossible. After 
all, we should consider worlds in their fundamental aspects, and logical or met-
aphysical possibility is one of them. Surely these are important features of  
a world, especially when we are dealing with an analysis of modality. By ac-
cepting this assumption, SIC might easily be taken to be true. Even more, it 
would be obviously true since it would state that when considering the feature 
of being possible, every possible world is more similar to the actual world than 
any impossible world is. Though it is difficult to argue against this claim, it is 
presupposed that the only important feature of a world is being either possible 
or impossible and, as we have seen, we do not have to compare worlds (neither 
any other object) only because of this feature. As such SIC should not be used 
as a guide for a proper understanding of the notion of similarity.  

6. Conclusion 

 We believe that the above considerations give good reasons to claim that 
the trivial world should be taken to be more similar to the actual world than 
some non-trivial worlds are, and that there are impossible worlds which are (in 
some respects) more similar to the actual world than some possible worlds are. 
Because of this, both DTW and SIC should not be considered to be good guides 
for understanding the notion of similarity between worlds.  
 This conclusion raises two important questions – is it possible to deliver 
such an interpretation of the notion of similarity which does not rely on DTW 
and SIC? And if this is so, is the refutation of SIC necessary in order to save 
the validity of ECQ in the actual world (resp. in classical logic)? We believe 
that there is a positive answer to the first question. A project of such an account 
of the notion of similarity was delivered in Sendłak (2016). Although the in-
terpretation that was presented in this work gives further reasons to dismiss 
SIC, we believe that SIC is independent of ECQ and DTW. After all, both w1 
and w2 are impossible worlds, and as such SIC has no important application to 
determine which of these is closer to the actual world; it applies to them in 
exactly the same way.  
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 Nevertheless, as we argued in Sendłak (2016), regardless of the problem of 
the validity of ECQ, one can indicate the reasons for a refutation of SIC. We 
believe that this modification in the interpretation of the notion of similarity 
(i.e. refutation of both SIC and DTW) helps us better understand the use of 
counterpossibles in general.8 
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