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A Valid Rule of β-conversion for the Logic  
of Partial Functions1 

MARIE DUŽÍ – MILOŠ KOSTEREC 

ABSTRACT: The goal of this paper is to examine the conditions of validity for the rule 
of β-conversion in TIL, which is a hyperintensional, typed λ-calculus of partial func-
tions. The rule of β-reduction is a fundamental computational rule of the λ-calculi 
and functional programming languages. However, it is a well-known fact that the 
specification of this rule is ambiguous (see, e.g., Plotkin 1975 or Chang & Felleisen 
2012). There are two procedurally non-equivalent ways of executing the rule, namely 
β-conversion ‘by name’ and β-conversion ‘by value’. In the λ-calculi conversion by 
name is usually applied, though it is known that such a conversion is not uncondi-
tionally valid when partial functions are involved. If a procedure that is typed to pro-
duce an argument value is improper by failing to produce one, conversion by name 
cannot be validly applied. On the other hand, conversion by value is valid even in the 
case of improperness. Moreover, we show that in a typed λ-calculus the specification 
of λ-closure is also not unambiguous. There is an interpretation of this specification 
under which β-reduction by name is not valid even when the argument procedure 
does not fail to produce a value. As a result, we present a universally valid rule of  
β-reduction by value.  
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0. Introduction 

 The goal of this paper is to sort out the conditions of validity of β-con-
version in a hyperintensional, partial, typed λ-calculus. Since Transparent 
Intensional Logic (TIL) is such a system, we will examine these conditions 
in TIL as a sample theory.2 The terms of TIL are interpreted procedurally, 
which is to say that they denote procedures (roughly, Church’s functions-
in-intension) producing set-theoretical functions/mappings (Church’s func-
tions-in-extension) rather than the mappings themselves. This is in good 
harmony with the original interpretation of the terms of the lambda calcu-
lus, which was indeed procedural. For instance, Barendregt says:  

[I]n this interpretation the notion of a function is taken to be intensional, 
i.e., as an algorithm. (Barendregt 1997, 184) 

We would rather say, “… is taken to be hyperintensional, i.e., as a proce-
dure”, because the term ‘intensional’ is currently reserved for mappings 
from possible worlds (if not among proof-theoretic semanticists, then at 
least among model-theoretic semanticists).  
 Thus λ-Closure, [λx1…xn X], transforms into the very procedure of pro-
ducing a function by abstracting over the values of the variables x1, …, xn. 
Similarly, Composition, [X X1…Xn], transforms into the very procedure of 
applying a function produced by the procedure X to the tuple-argument (if 
any) produced by the procedures X1, …, Xn. The procedural semantics of 
TIL makes it possible to explicitly deal with those features that are other-
wise hidden if dealing only with the products of the procedures, i.e. func-
tions-in-extension. These features concern in particular the operations in a 
hyperintensional context where the very procedure denoted by a term is 
being operated on, and such features show up also when dealing with  
β-conversion.  

                                                           
2  For details on TIL see, in particular, Tichý (1988) and Duží et al. (2010).  
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 The rule of β-reduction is a fundamental computational rule of the  
λ-calculi and functional programming languages. In the λ-calculi the rule 
is usually specified thus:  

 (λx M) N  ⊢ M [x := N] 

where M is a procedure with a formal parameter x, and M calls another 
procedure N to supply the actual argument value. Hence by ‘M [x := N]’ is 
meant the collision-less substitution of N for all the occurrences of the var-
iable x in the calling procedure M. However, Plotkin in (1975) pointed out 
that this specification is ambiguous. There are two procedurally or oper-
ationally non-equivalent ways of executing the rule, namely β-reduction 
‘by name’ and β-reduction ‘by value’. From the operational point of view, 
these two ways differ in the way the argument value is being passed for 
the formal parameter x. If by name, then the procedure denoted by the 
term N is executed after its substitution for all the occurrences of the var-
iable x in the calling-procedure body M (after appropriate renaming of  
λ-bound variables to prevent collision). If by value, then the procedure N 
is executed first, and only if N does not fail to produce an argument value 
is this value substituted for all the occurrences of x in the body M. Plotkin 
(1975) put forward a programming language and a formal calculus for 
each calling mechanism and then showed how each determines the other. 
As a result, he proved that the two mechanisms are not operationally 
equivalent. Moreover, in Duží (2013 and 2014) it has been logically proved 
that these two ways of executing the conversion are not only operationally 
but also denotationally non-equivalent whenever partial functions are in-
volved. 
 By validity of the β-conversion rule we mean the following. The rule is 
valid if and only if both the terms on the right-hand and the left-hand side 
of the rule denote procedures that are strictly equivalent in the sense that 
under any valuation v the two procedures produce the same function/map-
ping or are both v-improper, that is, fail to produce anything.3 
 In Duží & Jespersen (2015) it has been proved that β-reduction by name 
is not valid if partial functions are involved and the procedure denoted by 

                                                           
3  As an extreme case, the produced function/mapping might be nullary, i.e. an atomic 
object. The produced object can be also a lower-order procedure. 
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the term N fails to produce an argument value.4 However, there is an in-
terpretation of λ-Closure, namely λτ-Closure, under which β-reduction 
by name is not valid even if the procedure N does produce an argument 
value.  
 The novel contributions of this paper are as follows. We define a variant 
of β-conversion by value and prove its validity regardless of whether par-
ticular constituents are improper and regardless of whether we deal with  
λ- or λτ-Closure. However, we also prove that in a special case of λτ-Clo-
sure this rule is not applicable. Moreover, this paper provides a systematic 
study of the applicability of β-conversion in a hyperintensional lambda cal-
culus of partial functions, which to the best of our knowledge has not been 
presented until now, though similar work has been undertaken since the 
early 1970s, but merely for simple-typed or untyped λ-calculi. Moreover, 
the call-by-name strategy cannot be applied in a hyperintensional context, 
i.e., in hyperintensional λ-calculi such as TIL. The reason is that in such a 
context the formal parameter x is contained within a displayed (as opposed 
to executed) procedure that figures here only as an object to operate on, 
which makes the substitution logically unfeasible. Our substitution method 
based around the functions Sub and Tr is similar to Chang & Felleisen 
(2012)’s call-by-need reduction by value. However, their work is couched 
in an untyped λ-calculus. 
 The rest of the paper is organized as follows. Section 1 presents the 
fundamentals of TIL, especially the technical apparatus needed to deal with 
the rules of β-conversion. In Section 2 we introduce three variants of  
β-conversion and examine their validity; they are βn-conversion by name, 
βv-conversion by value and restricted βr-conversion by name. In Section 3 
we examine Tichý’s λτ-Closure and show that there is an interpretation of 
his definition under which neither of the conversions by name is valid and 
βv-conversion by value is not applicable. Thus, we recommend using  
β-reduction by value and λ-Closure only. Section 4 contains some conclud-
ing remarks. 

                                                           
4  There are two other defects connected with this way of executing the rule, i.e. with 
calling by name, that are also demonstrated by Duží in (2013 and 2014), to wit, a loss 
of analytic information and non-effectiveness.  
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1. TIL in brief 

 In this section, we briefly recapitulate the technical fundamentals of 
TIL necessary for dealing with β-conversions. The terms of the TIL lan-
guage denote abstract procedures that produce set-theoretical mappings 
(functions-in-extension) or lower-order procedures. These procedures are 
rigorously defined as TIL constructions. Being procedural objects, con-
structions can be executed in order to operate on input objects (of a lower-
order type) and produce the object (if any) they are typed to produce, 
while non-procedural objects, i.e. non-constructions, cannot be executed. 
There are two atomic constructions that present input objects to be oper-
ated on. They are Trivialization and Variables. The operational sense of 
Trivialization is similar to that of constants in formal languages. A Triv-
ialization presents an object X without the mediation of any other proce-
dures. Using the terminology of programming languages, the Trivializa-
tion of X, ‘0X’ in symbols, is just a pointer to X. Variables produce objects 
dependently on valuations; they v-construct. We adopt an objectual vari-
ant of the Tarskian conception of variables. To each type (see Definition 
2) are assigned countably many variables that range over this particular 
type. Objects of each type can be arranged into infinitely many se-
quences. The valuation v selects one such sequence of objects of the re-
spective type, and the first variable v-constructs the first object of the 
sequence, the second variable v-constructs the second object of the se-
quence, and so on. Thus the execution of a Trivialization or a variable 
never fails to produce an object. However, the execution of some of the 
molecular constructions can fail to present an object of the type they are 
typed to produce. When this happens, we say that the constructions are 
v-improper. There are two kinds of improperness. Either a construction 
is compounded in a type-theoretically incoherent (‘nonsensical’) way, or 
it is an application of a function to an argument at which the function is 
not defined.  
 Thus, we define:  

 Definition 1 (construction) 
 (i)  Variables x, y, … are constructions that construct objects (ele-

ments if their respective ranges) dependently on a valuation v; they 
v-construct. 
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 (ii)  Where X is an object whatsoever (even a construction), 0X is the 
construction Trivialization that constructs X without any change. 

 (iii) Let X, Y1,…,Yn be arbitrary constructions. Then the Composition  
[X Y1…Yn] is the following construction. For any v, the Composi-
tion [X Y1…Yn] is v-improper if one or more of the constructions 
X, Y1,…,Yn are v-improper, or if X does not v-construct a function 
that is defined at the n-tuple of objects v-constructed by Y1,…,Yn. 
If X does v-construct a v-proper function, then [X Y1…Yn] v-con-
structs the value of this function at the n-tuple.  

 (iv) (λ-) Closure [λx1…xm Y] is the following construction. Let x1, x2, 
…, xm be pair-wise distinct variables and Y a construction. Then 
[λx1…xm Y] v-constructs the function f that takes any members  
B1, …, Bm of the respective ranges of the variables x1, …, xm into 
the object (if any) that is v(B1/x1,…,Bm/xm)-constructed by Y, 
where v(B1/x1,…,Bm/xm) is like v except for assigning B1 to x1, …, 
Bm to xm. 

 (v)  Where X is an object whatsoever, 1X is the construction Single Ex-
ecution that v-constructs what X v-constructs. Thus if X is a v-im-
proper construction or not a construction as all, 1X is v-improper. 

 (vi) Where X is an object whatsoever, 2X is the construction Double 
Execution. If X is not itself a construction, or if X does not v-con-
struct a construction, or if X v-constructs a v-improper construc-
tion, then 2X is v-improper. Otherwise 2X v-constructs what is v-
constructed by the construction v-constructed by X.  

 (vii) Nothing is a construction, unless it so follows from (i) through  
(vi).    

 Note that the (λ-) Closure [λx1…xm Y] is not v-improper for any valua-
tion v, as it always v-constructs a function. Even if the constituent Y is  
v-improper for every valuation v, the Closure is not v-improper. Yet in such 
a case the resulting function is a bizarre object; it is a degenerate function 
that is undefined at all arguments.  
 With constructions of constructions, constructions of functions, func-
tions, and functional values in our stratified ontology, we need to keep track 
of the traffic between multiple logical strata. The ramified type hierarchy 
does just that. The type of first-order objects includes all objects that are 
not constructions. Therefore, it includes not only the standard objects of 
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individuals, truth-values, sets, etc., but also functions defined on possible 
worlds (i.e., the intensions germane to possible-world semantics). The type 
of second-order objects includes constructions of first-order objects and 
functions that have such constructions in their domain or range. The type 
of third-order objects includes constructions of first- and second-order ob-
jects and functions that have such constructions in their domain or range. 
And so on, ad infinitum.  

 Definition 2 (ramified hierarchy of types)  
Let B be a base, where a base is a collection of pair-wise disjoint, non-
empty sets. Then: 

 T1 (types of order 1).  
 (i)  Every member of B is an elementary type of order 1 over B. 
 (ii)  Let α, β1, …, βm (m > 0) be types of order 1 over B. Then the 

collection (α β1 … βm) of all m-ary partial mappings from β1 × … 
× βm into α is a functional type of order 1 over B. 

 (iii) Nothing is a type of order 1 over B unless it so follows from (i) 
and (ii). 

 Cn (constructions of order n)  
 (i)  Let x be a variable ranging over a type of order n. Then x is a con-

struction of order n over B. 
 (ii)  Let X be a member of a type of order n. Then 0X, 1X, 2X are con-

structions of order n over B.  
 (iii) Let X, X1, …, Xm (m > 0) be constructions of order n over B. Then  

[X X1… Xm] is a construction of order n over B. 
 (iv) Let x1, …, xm, X (m > 0) be constructions of order n over B. Then 

[λx1…xm X] is a construction of order n over B. 
 (v)  Nothing is a construction of order n over B unless it so follows 

from Cn (i)-(iv).  
 Tn+1 (types of order n + 1)  
 Let ∗n be the collection of all constructions of order n over B. Then 
 (i)  ∗n and every type of order n are types of order n + 1.  
 (ii)  If m > 0 and α, β1, …, βm are types of order n + 1 over B, then  

(α β1 … βm) (see T1 ii)) is a type of order n + 1 over B. 
 (iii) Nothing is a type of order n + 1 over B unless it so follows from 

(i) and (ii).   
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 For the purposes of natural-language analysis, we are usually assuming 
the following base of ground types: 

 ο: the set of truth-values {T, F}; 
 ι: the set of individuals (the universe of discourse); 
 τ: the set of real numbers (doubling as discrete times); 
 ω: the set of logically possible worlds (the logical space).  

We model sets and relations by their characteristic functions. Thus, for in-
stance, (οι) is the type of a set of individuals, while (οιι) is the type of a 
relation-in-extension between individuals. Empirical expressions denote 
empirical conditions that may or may not be satisfied at the world/time pair 
selected as points of evaluation. We model these empirical conditions as 
possible-world-semantic intensions. Intensions are entities of type (βω): 
mappings from possible worlds to an arbitrary type β. The type β is fre-
quently the type of the chronology of α-objects, i.e., a mapping of type 
(ατ). Thus α-intensions are frequently functions of type ((ατ)ω), abbrevi-
ated as ‘ατω’. Extensional entities are entities of a type α where α ≠ (βω) 
for any type β. Where w ranges over ω and t over τ, the following logical 
form essentially characterizes the logical syntax of empirical language:  

 λwλt […w….t…]. 

 Examples of frequently used intensions are: propositions of type  
οτω, properties of individuals of type (οι)τω, binary relations-in-intension 
between individuals of type (οιι)τω, individual offices (or roles) of type 
ιτω.  
 Logical objects like truth-functions and quantifiers are extensional:  
∧ (conjunction), ∨ (disjunction) and ⊃ (implication) are of type (οοο), 
and ¬ (negation) of type (οο). The quantifiers ∀α, ∃α are type-theoreti-
cally polymorphic total functions of type (ο(οα)), for an arbitrary type α, 
defined as follows. The universal quantifier ∀α is a function that associ-
ates a class A of α-elements with T if A contains all elements of the type 
α, otherwise with F. The existential quantifier ∃α is a function that asso-
ciates a class A of α-elements with T if A is a non-empty class, otherwise 
with F. Below all type indications will be provided outside the formulae 
in order not to clutter the notation. Moreover, the outermost brackets of 
Closures will be omitted whenever no confusion can arise. Furthermore, 



18  M A R I E  D U Ž Í  –  M I L O Š  K O S T E R E C  

‘X/α’ means that an object X is (a member) of type α. ‘X →v α’ means 
that X is typed to v-construct an object of type α, regardless of whether X 
in fact constructs anything. We write ‘X → α’ if what is v-constructed 
does not depend on a valuation v. Throughout, it holds that the variables 
w →v ω and t →v τ. If C →v ατω then the frequently used Composition 
[[C w] t], which is the intensional descent (a.k.a. extensionalization) of 
the α-intension v-constructed by C, will be encoded as ‘Cwt’. 
 In order to work with a hyperintensional context, in which a construc-
tion is operated on, we need two special functions, Sub and Tr. The poly-
morphic function Sub of type (∗n∗n∗n∗n) operates on constructions as fol-
lows. When applied to constructions C1, C2, C3, Sub returns as its value the 
construction D that is the result of the correct (i.e. collision-less) substitu-
tion of C1 for C2 in C3. For instance, the result of the Composition  
[0Sub 00John 0him 0[0Wife_ofwt him]] is the Composition [0Wife_ofwt 0John]. 
The logical operation of substitution is treated as a theoretical primitive.  
 The likewise polymorphic function Tr returns as its value the Triviali-
zation of its argument. Thus the result of [0Tr 0John] is 0John. If what is 
wanted as output is the Trivialization of the Trivialization of John, the cor-
responding Composition is [0Tr 00John]. When x ranges over ι, the Com-
position [0Tr x] v(John/x)-constructs 0John. Note one essential difference 
between the function Tr and the construction Trivialization. Whereas the 
variable x is free in [0Tr x], the Trivialization 0x binds the variable x by 
constructing just x independently of valuation. 

2. β-conversion 

 In the lambda calculi, the rule of β-conversion is usually specified in 
this form: 

 (λx.M) N =β M [x:=N] 

The right-hand side contractum is the result of substituting the term N for 
all free occurrences of the variable x within the term M. The rule of  
β-reduction is the left-to-right part of the above equality: 

 (β)  (λx.M) N →β M [x:=N] 
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 The rule (β) is used to model the application of the function referred to 
by the term λx.M to the argument denoted by N. Using programming-lan-
guage technical jargon, we can explicate the rule as follows. The term λx.M 
denotes, or declares, a procedure with a formal parameter x and the proce-
dural body M. Thus the redex on the left-hand side denotes a procedure that 
consists in calling the procedure λx.M which is to be executed with the 
actual argument value replacing the formal parameter x, and this value is 
to be provided by the sub-procedure N. The contractum term on the right-
hand side is schematic. In principle, it can be read as the instruction to ex-
ecute the procedural body M in which the formal parameter x has been re-
placed by the actual argument value provided by the procedure N. In case 
N fails to produce an argument value, the procedure body M has nothing to 
operate on, and thus the rule (β) cannot be applied. While in the λ-calculi 
of total functions this fact is irrelevant, in the λ-calculi of partial functions 
this eventuality has to be taken into account.5  
 Partiality, as we only know too well, brings about technical complica-
tions. However, we do need to work with partial functions, because other-
wise we face the problem of a non-recursive explosion of domains that is 
computationally non-tractable (for details see Duží 2003). Yet just a few 
results have been obtained in this area. Moggi (1988) would appear to have 
been the first to put forward a definition of a partial λ-calculus, and Fefer-
man (1995) presents a set of axioms for the Partial Lambda Calculus (for 
details see, e.g., Duží et al. 2010, § 2.7, 261-262). However, they both spec-
ify the predicate ‘↓’ which in ‘N↓’ means that the term N is ‘defined’ or 
‘referring’. Consequently, the rule is valid in the sense of weak congruency; 
if both sides are defined then they denote the same value. However, such a 
restriction to non-recursively defined cases of v-properness would be a se-
rious shortcoming of TIL or indeed any other formal semantics based on 
the λ-calculus. Hence, we do need a universally valid rule regulating  
β-transformation. TIL is a λ-calculus of partial functions, and in virtue of 
its procedural semantics we have the technical machinery required to spec-
ify a universally valid rule of β-conversion. 

                                                           
5  A partial function is a function with at most one value at each argument. Every total 
function is, therefore, a partial function, but not vice versa. 



20  M A R I E  D U Ž Í  –  M I L O Š  K O S T E R E C  

2.1. Three kinds of β-conversion 

 Now we are going to examine three kinds of β-conversion using the 
technical apparatus of TIL. The three kinds are β-conversion by name  
(βn-conversion), β-conversion by value (βv-conversion), and restricted  
β-conversion by name (βr-conversion). We will use simple examples to il-
lustrate them. Let the calling procedure M and the called procedure N be 
[λx λy [0> y x]] and [0Div 03 00], respectively. Then we have the Composi-
tion 

 (1)  [[λx λy [0> y x]] [0Div 03 00]] 

Types. x, y →v τ; >/(οττ); Div/(τττ): the division function; 3,0/τ. 
 The Closure [λx λy [0> y x]] produces a mapping of type ((οτ)τ), i.e. a 
function f that associates a number x with the class of numbers y that are 
larger than the number x. 
 However, as mentioned above, partiality is a complicating factor. Some 
molecular constructions can be v-improper in the sense of failing to pro-
duce the sort of object they are typed to construct. There are two kinds of 
improperness, as we said above. Either a construction is compounded in a 
type-theoretically incoherent way, or it is the procedure of applying a func-
tion to an argument at which the function is not defined. We will now ad-
dress the latter kind of improperness. Improperness rooted in wrong typing 
will be examined in Section 3 below. 
 The Composition [0Div 03 00] is the procedure of applying the division 
function to arguments 3 and 0. Since dividing any number by 0 is not de-
fined, this Composition does not v-construct anything for any valuation v; 
it is v-improper for any valuation v, or improper for short.  
 The Composition (1) is the procedure of applying the function f con-
structed by [λx λy [0> y x]] to the argument that is to be produced by the 
Composition [0Div 03 00]. Yet since this Composition does not produce 
anything, there is no argument to apply f to. Hence, the Composition (1) is 
by Def. 1 also improper. 

2.1.1. β-conversion by name 

 The result of applying βn-conversion to (1) is that the x in the ‘body’ of 
M is replaced by [0Div 03 00]. This yields:  
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 (2)  [[λx λy [0> y x]] [0Div 03 00]] →βn [λy [0> y [0Div 03 00]]]  

This result demonstrates the problem of βn-reduction in the logic of partial 
functions. While the left-hand side Composition of (2) is improper, the 
right-hand side contractum is not improper. It produces a degenerate func-
tion undefined at all its arguments. In other words, we obtain an empty 
class of numbers, the characteristic function of which is undefined at any 
number. Bizarre as it is, it is still something rather than nothing and there-
fore an object. Hence the left-hand and the right-hand side constructions of 
(2) are not strictly equivalent, hence the βn-rule is not valid.  
 In this simple case, the absence of strict equivalence might seem harm-
less. After all, if that bizarre function is applied to a number, the result is 
an improper construction; hence also a gap comparable to a truth-value gap, 
and the final result would be the same. Yet our operational semantics re-
veals that it is not quite as harmless as it might seem. The execution of the 
left-hand side construction is improper, which is something we already 
know. It makes no sense to execute this construction, because it fails to 
produce something. However, in the right-hand side construction this fact 
is hidden. We end up with a procedure producing a function, and only after 
calling this procedure a second time is this failure revealed.  
 This deficiency is best demonstrated by an analysis of an empirical at-
titude de re. Consider:  

 (3)  Tom believes of the Pope that he is wise. 

On the de re reading of (3) the property of being believed by Tom to be 
wise is ascribed to the individual (if any) that holds the papal office. Thus, 
the analysis amounts to this construction: 

 (3*) λwλt [λhe [0Believewt 0Tom λw*λt* [0Wisew*t* he]] 0Popewt]  

Types. Variable he →v ι; Believe/(οιοτω)τω; Tom/ι; Wise/(οι)τω; Pope/ιτω.6  

                                                           
6  For the sake of simplicity, we analyse the attitude of believing intensionally, that 
is, as a relation-in-intension to a proposition, which makes for an implicit attitude. 
The believer is related to the proposition regardless of the particular way the propo-
sition is conceptualized or constructed. This approach yields notorious problems with 
logical-mathematical omniscience. Thus, a more appropriate analysis would be hy-
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 The construction of the papal office, 0Pope, occurs in (3*) extension-
ally, i.e. with de re supposition. Thus if the Pope does not exist (that is, if 
the papal office is not occupied in world w and time t of evaluation) then 
its extensionalization 0Popewt is v-improper, and (3*) constructs a proposi-
tion that lacks a truth-value at the relevant 〈w, t〉-pair. This is as it should 
be, though, because there is an existential presupposition de re.7 Now ex-
ecuting β-reduction by name consists in replacing the ‘formal parameter’ 
he (that is, the variable he) by the Composition 0Popewt, which in turn 
yields this construction: 

 (4)  λwλt [0Believewt 0Tom λw*λt* [0Wisew*t* 0Popewt]]  

However, in (4) 0Pope does not occur with supposition de re. This is be-
cause 0Popewt has been drawn into the λ-generic intensional context of 
Tom’s perspective (λw*λt*), and an intensional context is dominant over 
the lower extensional one, which in turn means that the improperness of 
0Popewt is suppressed or irrelevant. If 0Popewt is v-improper, then Tom  
believes that the degenerate proposition v-constructed by the Closure 
λw*λt* [0Wisew*t* 0Popewt] is true, which is a logical possibility. In other 
words, there is no logical reason for the proposition constructed by (4) to 
be undefined. Thus βn-reduction has turned a de re occurrence into a de 
dicto occurrence, which is wrong.  
 For these reasons a necessary condition for the validity of β-reduction 
by name is usually specified, namely that the procedure that is typed to 
produce an argument value be proper. For instance, Raclavský (2009) pre-
sents the following definition of the validity of β-reduction by name: 

Let C be a closure of the form λx […x…] that can contain also other 
variable than x (λ-bound or not). Let C be composed with the construc-
tion D in the Composition [C D]. Let D be a v-proper construction. If D 
contains free occurrences of variables and these variables are λ-bound 

                                                           
perintensional believing relating the believer to a hyperproposition, that is, a con-
struction of a proposition, which makes for an explicit attitude: Believe*/(οι∗n)τω. 
Yet as a toy example, demonstrating the invalidity of β-reduction by name the im-
plicit Believe suffices. 
7  For details on the analysis of propositional attitudes de dicto and de re see, for in-
stance, Duží et al. (2010, § 5.1) or Duží & Jespersen (2012). 
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in C, then let C be α-expanded into a construction C′ that does not con-
tain the variables free in D as λ-bound. Then the construction C′′ that is 
obtained from C′ by substituting the construction D for all free occur-
rences of the λ-bound variable corresponding to x in C′′ is the β-reduced 
form of the construction C. (Raclavský 2009, 285)8 

Hence, the conditions for the validity of β-reduction by name can be sum-
marized as follows: 

 i) the construction D of an argument value must be v-proper; 
 ii) no collision of variables must arise; if D contains free occurrences 

of variables that occur λ-bound in C, we must apply α-conversion 
to avoid collision.  

 This is a standard way of specifying β-conversion by name. However, 
in Duží & Jespersen (2013) another shortcoming of β-reduction by name 
has been identified. Even if β-reduction by name is a valid transformation 
satisfying conditions (i) and (ii), it can yield a loss of analytic information 
about which function has been applied to which argument. The authors il-
lustrate this problem by an analysis of the well-known sentence, “John 
loves his wife, and so does Peter”. There are two non-equivalent readings 
of this sentence. On the so-called sloppy reading, both John and Peter love 
their own wives, making them exemplary husbands. On the so-called strict 
reading, John and Peter share the property of loving John’s wife, with trou-
ble looming on the horizon. The problem is that β-reduction by name re-
duces the sloppy reading to the strict one, squeezing out the former. As a 
result, the anaphor resolution of ‘so does Peter’ invalidates the natural read-
ing on which Peter loves his own wife whom he is presupposed not to share 
with John, as would be a possibility in a bigamist culture. As a solution to 
this problem, the authors define the rule of β-reduction by value, which we 
are going to examine below. 

2.1.2. Restricted β-conversion by name 

 Above we specified the shortcomings evinced by β-conversion by 
name. There is, however, a restricted variant of this conversion that  

                                                           
8  Translated from the Czech original by the authors. 
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suffers none of them. This variant is restricted β-conversion by name.  
βr-conversion consists in collision-less substitution of free variables for 
λ-bound variables ranging over the same types. It is a strictly equivalent, 
and thus valid, conversion. For instance, [λx [0+ x 01] y] can be simplified 
to [0+ y 01]. This transformation is nothing but a manipulation with  
λ-bound variables that has much in common with η-reduction and much 
less with β-reduction. The latter is the operation of applying a function f 
to its argument a in order to obtain the value of f at a (leaving it open 
whether a value emerges). No such features can be found in βr-reduction. 
It is just a formal simplification of the original construction.  
 For instance, above we analysed the de re attitudinal sentence “Tom 
believes of the Pope that he is wise” as ascribing the property of being 
believed by Tom to be wise to the holder of the papal office: 

 λwλt [λhe [0Believewt 0Tom λw*λt* [0Wisew*t* he]] 0Popewt] 

This is the βr-restricted form of the literal analysis of the sentence “The 
Pope has the property of being believed by Tom to be wise”, which 
amounts to 

 λwλt [λw′λt′[λhe [0Believew′t′ 0Tom λw*λt* [0Wisew*t* he]]]wt 0Popewt] 

 Yet we see little reason to differentiate semantically or logically be-
tween “The Pope is believed by Tom to be wise” and “The Pope has the 
property of being believed by Tom to be wise”.9 Hence, this kind of reduc-
tion is frequently applied in logical analysis of natural-language expres-
sions. 

                                                           
9  This is not to say we see no reason at all not to differentiate. For instance, if the 
believer is a self-assured nominalist then they may protest that while they do believe 
that the Pope is wise they do not believe that the Pope has any properties. Or it could 
be argued that one thing is to believe that the Pope is wise and another is to believe that 
the Pope has the property of being wise, because the latter at least appears to presuppose 
that the believer have the additional conceptual resources to master the notion of prop-
erty.  
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2.1.3. β-conversion by value 

 Above we examined unrestricted β-conversion by name and warned 
against its undesirable side-effects. The difference between conversion by 
name and by value has consequences also from the point of view of com-
putational complexity. When conversion by name is executed, the called 
procedure N is to be executed as many times as the variable x occurs in the 
calling procedure M. Here is a simple example for illustration. Consider 
the application of the identity function λx [x=x] to the argument computed 
by10 ((1+1)/2)2: 

 [λx [x=x] ((1+1)/2)2] 

Reduction by name results in the equality  

 (A) (1+1)/2)2 = (1+1)/2)2 

On the other hand, if we pass the argument by value, then we first obtain 
the argument value by executing the procedure (1+1)/2)2. This produces 
the number 1, the Trivialization of which is afterwards substituted for x. As 
a result, we obtain the equality  

 (B)  01 = 01 

It is readily seen that procedure (A) is much more complicated than (B). 
Passing the argument to the function by name and by value makes, there-
fore, a difference to the computational complexity of the resulting proce-
dure.  
 Hence, we need a universal rule of β-conversion that would not exhibit 
the above defects. Fortunately, it turns out to be feasible to formulate such 
a generally valid logical rule. The invalid rule by name is moulded on the 
programming technique of calling a sub-procedure N by name: the sub-
procedure itself is substituted for the ‘local variable’ x in the ‘procedure 
body’ M. Programmers are well aware of the fact that this technique can 

                                                           
10  Now we use the usual mathematical notation to make the constructions easier 
to read. In TIL notation the construction ((1+1)/2)2 would be written as  
‘[0Power [0Div [0+ 01 01] 02] 02]’, where Power, Div/(υυυ), υ the type of natural 
numbers.  
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have undesirable side-effects, unlike the technique of calling a sub-proce-
dure by value.  
 The rule of β-reduction by value was originally specified logically for 
TIL in Duží et al. (2010, § 2.7). Unfortunately, there is a typo in Claim 2.6, 
(cf. Duží et al. 2010, 270) that proves its validity. The correct definition 
can be found in Duží (2014). Here we recapitulate the correct definition 
and provide the proof of validity. 

 Definition 3 (β-conversion by value)  
Let Y →v α; x1, D1 →v β1,…, xn, Dn →v βn, [λx1…xn Y] →v (αβ1…βn). 
Then the conversion  

  [[λx1…xn Y] D1…Dn] ⇒β 2[0Sub [0Tr D1] 0x1 … [0Sub [0Tr Dn] 0xn 
0Y]] 

is β-reduction by value. The reverse conversion is β-expansion by  
value.     

 Claim 1 
β-reduction and β-expansion by value are valid conversions. In other 
words, the constructions 
 [[λx1…xn Y] D1…Dn]  
and  
 2[0Sub [0Tr D1] 0x1 … [0Sub [0Tr Dn] 0xn 

0Y]]  
are strictly equivalent.  

 Proof 
 Let C be identical to [[λx1…xn Y] D1…Dn] and D to 2[0Sub [0Tr D1] 
0x1 … [0Sub [0Tr Dn] 0xn 

0Y]]. We are to prove that for any valuation v either 
both C and D are v-improper, or C and D v-construct the same object.  

(a) If for some i, 1≤ i ≤ n, construction Di is v-improper then so is the 
Composition C, according to Def. 1, iii). Then also the Compositions 
[0Tr Di] and [0Sub [0Tr D1] 0x1 … [0Sub [0Tr Dn] 0xn 

0Y]] are v-improper 
according to Def. 1, iii), and thus also the construction D is v-improper 
according to Def. 1, vi). 

(b) Otherwise, let D1, …, Dn all be v-proper, v-constructing the objects 
d1, …, dn, respectively. Then by Def. 1, iv) the Closure [λx1…xn Y]  
v-constructs the function f/(αβ1…βn).  
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 (b1) If Y is v(d1/x1,…,dn/xn)-improper, then f is undefined on 
〈d1,…,dn〉 and thus Composition C is v-improper according to 
Def. 1, iii). We are to show that D is also v-improper. The 
Composition [0Sub [0Tr D1] 0x1 … [0Sub [0Tr Dn] 0xn 

0Y]] v-con-
structs Y(x1/0d1,…, xn/0dn), i.e. the construction Y where all the 
occurrences of the variables x1,…,xn have been replaced by 
0d1,…,0dn, respectively. Since Y is v(d1/x1,…,dn/xn)-improper, 
the execution of Y(x1/0d1,…, xn/0dn), hence D, is v-improper as 
well according to Def. 1, vi).  

 (b2) Otherwise, if Y is not v(d1/x1,…,dn/xn)-improper, then the value of 
f on 〈d1,…,dn〉 is the α-entity v(d1/x1,…,dn/xn)-constructed by Y. 
Let this α-entity be a. Then by Def. 1, iii), construction C v-con-
structs a. We are to show that construction D also v-constructs a. 
The first Execution of D v-constructs Y(x1/0d1,…, xn/0dn). Since 
the Trivializations 0d1,…,0dn construct the entities d1,…,dn, re-
spectively, the second Execution v-constructs the entity a. 

Hence, C and D come out strictly equivalent.  

 In Section 2.1.1 we demonstrated the invalidity of the βn-conversion of 
the Composition  

 [λx [λy [0> y x]] [0Div 03 00]] 

Using the rule of βv-conversion defined above, here is a valid conversion 
of this Composition: 

 [λx [λy [0> y x]] [0Div 03 00]] ⇒β 
2[0Sub [0Tr [0Div 03 00]] 0x 0[λy [0> y x]]] 

It is readily seen that both the left-hand and the right-hand side construc-
tions are improper. Indeed, since [0Div 03 00] is improper, by Def. 1, iii) 
the Composition [λx [λy [0> y x]] [0Div 03 00]] is improper. For the same 
reason, the Composition [0Tr [0Div 03 00]] is improper and thus also the 
whole Composition [0Sub [0Tr [0Div 03 00]] 0x 0[λy [0> y x]]] as well as its 
Double Execution are improper. Partiality is strictly propagated up, as it 
should be.  
 Similarly, the analysis of the de re attitude (3*) can be validly reduced 
in this way: 
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 λwλt [λhe [0Believewt 0Tom λw*λt* [0Wisew*t* he]] 0Popewt] ⇒β  

 λwλt 2[0Sub [0Tr 0Popewt] 0he 0[0Believewt 0Tom λw*λt* [0Wisew*t* he]]] 

 Remark: The reduced construction is actually the literal analysis of the 
sentence “Tom believes of the Pope that he is wise”. The anaphoric refer-
ence ‘he’ referring to the holder of the papal office is resolved by the sub-
stitution of this holder (if any) for the variable he, that is, by the constituents 
[0Sub [0Tr 0Popewt] 0he ….  

 Proof 
 We are to prove that for any world w and time t of evaluation, the con-
structions  

  [λhe [0Believewt 0Tom λw*λt* [0Wisew*t* he]] 0Popewt] 

and  
 2[0Sub [0Tr 0Popewt] 0he 0[0Believewt 0Tom λw*λt* [0Wisew*t* he]]] 

v-construct the same truth-value or are both v-improper. 
1) Let 0Popewt v-construct an individual a. Then we will show that both 

constructions v-construct the same truth-value as does the Composition 
[0Believewt 0Tom λw*λt* [0Wisew*t* 0a]]. In any world w and time t of 
evaluation the following steps are truth-preserving: 

 ⇒ 
 a) [λhe [0Believewt 0Tom λw*λt* [0Wisew*t* he]] 0Popewt] ∅ 
 b) 0Popewt = 0a ∅ 
 c) [λhe [0Believewt 0Tom λw*λt* [0Wisew*t* he]] 0a]  
     a), b), SI (Leibniz) 
 d) [0Proper 0a] by Def. 1 
 e) [0Believewt 0Tom λw*λt* [0Wisew*t* 0a]] β-reduction by name 
 ⇐ 
 f) 2[0Sub [0Tr 0Popewt] 0he 0[0Believewt 0Tom λw*λt* [0Wisew*t* he]]] ∅  
 g) 0Popewt = 0a ∅ 
 h) [0Tr 0Popewt] = [0Tr 0a] g), SI, Def. of Tr 
 i) 2[0Sub [0Tr 0a] 0he 0[0Believewt 0Tom λw*λt* [0Wisew*t* he]]]   
     h), SI  
 j) [0Believewt 0Tom λw*λt* [0Wisew*t* 0a]]  
     i), Def. of Sub, Def.1, vi)  
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2) Let 0Popewt be v-improper. Then by Def. 1, iii), vi) all the Composi-
tions  

  [0Tr 0Popewt], 
   [λhe [0Believewt 0Tom λw*λt* [0Wisew*t* he]] 0Popewt] 
  [0Sub [0Tr 0Popewt] 0he 0[0Believewt 0Tom λw*λt* [0Wisew*t* he]]]  
 and thus also the Double Execution  
  2[0Sub [0Tr 0Popewt] 0he 0[0Believewt 0Tom λw*λt* [0Wisew*t* he]]]  
 are v-improper.   

 Remarks: At steps (c), (h) and (i) the rule of substitution of identicals 
for extensional contexts is applied. More precisely, since 0Pope occurs ex-
tensionally (de re), the v-congruent constructions 0Popewt and 

0a are sub-
stitutable salva veritate here. For details, see Duží et al. (2010, §2.7.1) and 
Duží (2013). Step (e) is justified by step (d). Since the Trivialization of an 
entity is never v-improper, β-reduction by name can be validly applied 
here. 

3. λα-Closure and β-conversion 

 We have so far tacitly applied the definition of λ-Closure as per Defi-
nition 1, iv):  

(λ-)Closure [λx1…xm Y] is the following construction. Let x1,…, xm be 
pair-wise distinct variables and Y a construction. Then [λx1 … xm Y]  
v-constructs a function f that takes any members B1,…, Bm of the re-
spective ranges of the variables x1,…, xm into the object (if any) that is 
v(B1/x1,…,Bm/xm)-constructed by Y, where v(B1/x1,…,Bm/xm) is like v 
except for assigning B1 to x1, …, B1 to xm. 

 According to this definition, λ-Closure is not v-improper for any valu-
ation v; it always v-constructs a function f of the following type. Let x1 → 
β1, …, xm → βm, and let Y be typed to v-construct objects of type α. Then 
the function f is of type (α β1…βm). However, the function f can be a de-
generate function, which takes no argument to a value. This is the case 
when Y is v-improper for any valuation v.  
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 Tichý (1988) applies the definition of λα-Closure that leaves room for 
a slightly different procedure than the above. Recapitulating Tichý’s defi-
nition, we have:11 

To generalize, let α be a type, x1, …, xm distinct variables ranging over 
the respective types β1, …, βm, and v a valuation. Any construction Y 
can be used in constructing a mapping from β1, …, βm into α; we shall 
call this latter construction the λα-closure of Y on x1, …, xm, or briefly 
[λα x1…xm Y]. For any v, [λα x1…xm Y] v-constructs the mapping which 
takes any X1, …, Xm of the respective types β1, …, βm into that member 
(if any) of α which is v(X1/x1, …, Xm/xm)-constructed by Y, where 
v(X1/x1, …, Xm/xm) is like v except for assigning X1 to x1, …, and Xm to 
xm. (Tichý 1988, 65; emphasis ours)  

 Claim 2  
 Every λ-Closure is a λα-Closure, but not vice versa.  

 Proof 
Let Y →v γ and α = γ. Then λ-Closure and λα-Closure are identical pro-
cedures producing the same (possibly degenerate) function f. However, 
if α ≠ γ then λ-Closure is a procedure identical to λγ-Closure that pro-
duces a function f/(γ β1…βm) while λα-Closure is another procedure 
producing a (degenerate) function g/(α β1…βm).   

 Claim 3  
The λα-Closure [λα x1…xm Y], Y →v γ and α ≠ γ, v-constructs a degen-
erate function. 

 Proof is obvious. If Y is typed to v-construct objects of type γ then the 
resulting mapping does not take any X1, …, Xm of the respective types 
β1, …, βm into that member (if any) of type α which is v(X1/x1, …, Xm/xm)-
constructed by Y, because there is no such member.  
 Hence, if α ≠ γ then λα-Closure is not identical to any λ-Closure. Ac-
cording to Tichý’s definition, λα-Closure is also never v-improper for any 

                                                           
11  Tichý uses here the term ‘collection’, because his definition of types follows only 
later in the text. For the sake of simplicity and in the interest of a smooth reading, we 
use ‘type’ instead of ‘collection’.  
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valuation v. It always v-constructs a function f; but again, this function can 
be degenerate. As with λ-Closure, the function f is degenerate in case Y is 
v-improper for any valuation v. But, importantly, this definition leaves 
room for another way of v-constructing a degenerate function. Suppose that 
Y is typed to v-construct objects of type γ, where γ ≠ α. Then, since for any 
valuation v no member of the type α is v-constructed by Y, the function  
f/(α β1…βm) is degenerate even if Y itself is not v-improper.12  
 A simple example to illustrate the situation. Let C be the λτ-Closure  

 [λτ x [0= 00 01]] 

where τ is the type of real numbers, x →v τ. Then the function f produced 
by [λτ x [0= 00 01]] is a degenerate function. The reason is this. According 
to the strict reading of Tichý’s definition the λτ-Closure C produces a map-
ping of type (ττ). Yet the Composition [0= 00 01] produces the truth-value 
F, which is an object of type ο. Hence no object of type τ is v-constructed 
by [0= 00 01], and thus f does not return any value at any number. Note the 
difference between [λτ x [0= 00 01]] and [λx [0= 00 01]]. While the former 
constructs a degenerate function f of type (ττ), the latter constructs an 
empty class of numbers, that is, an object of type (οτ).  
 The difference between λ-Closure and λα-Closure affects also the va-
lidity of β-conversion. When dealing with the validity of rules of β-con-
version, we have considered so far only one problematic issue, namely the 
case when the procedure N that is to produce an argument value is v-im-
proper by failing to do so. We have shown that in such a case the unre-
stricted rule of β-reduction by name is not a valid rule, while the restricted 
version of β-reduction by name and β-reduction by value are valid rules.  
 Nonetheless, there is another problematic issue, namely the procedure 
of applying a degenerate function f to an argument value. Trivially, such a 
procedure fails to produce anything, because a degenerate function returns 
no value at any argument. We have seen that the λ-Closure [λ x1…xm Y]  
v-constructs a degenerate function f in case Y is v-improper for any valuation 
                                                           
12  True, it is dubious whether Tichý indeed intended the interpretation that we present 
here, because he does not adduce any example of such a procedure. Thus it seems that 
he tacitly presupposed that the type α is identical with the type γ, and that the subscript 
α at ‘λα’ was intended only to indicate objects of which type Y is typed to v-construct. 
Yet if we take his definition literally, such an interpretation is possible.  
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v. Yet even in this case the rule of β-conversion by value is valid, as we have 
proved in Claim 1.  
 However, the λα-Closure [λα x1…xm Y] such that Y →v γ and α ≠ γ  
v-constructs a degenerate function f even in case Y is not v-improper, which 
is a complicating factor.  
 To illustrate the situation, consider the Composition  

 (5)  [[λτ x [0= 00 x]] 02]  

It satisfies both of the conditions (i) and (ii) for the validity of β-reduction 
by name as specified above; (i) Trivialization 02 is never v-improper, it 
constructs an argument value, namely the number 2 to which the function 
f/(ττ) constructed by [λτ x [0= 00 x]] is applied. The second condition (ii) is 
trivially satisfied, there being no collision of variables. Hence β-reduction 
by name would appear to be valid; but alas, it is not: 

 [[λτ x [0= 00 x]] 02] →β [0= 00 02] 

 The reason is obvious. Since f returns no value at any argument, its ap-
plication to any number is improper. Thus the left-hand side redex, i.e. the 
Composition (5), is improper. However, the contracted right-hand side 
Composition [0= 00 02] is a proper Composition producing the truth-value 
F. 
 The main reason for the insufficiency of Raclavský’s proposal of the 
validity conditions for β-reduction (by name) is that he does not take into 
account the strict literal reading of Tichý’s definition of λτ-Closure [λτ 
x1…xm Y], that is, the possibility that Y is typed to v-construct objects of 
type α where α ≠ τ. In other words, he works with λ-Closure rather than 
λτ-Closure.  
 Actually, to the best of our knowledge, the possibility that λα-Closure  
[λα x1…xm Y] can v-construct a degenerate function though the ‘body’ pro-
cedure Y is v-proper has not been taken into account up to now. Thus, we 
formu-late: 

 Claim 4  
Let a construction Y →v γ be v-proper for any valuation v, and let α ≠ γ. 
Further, let D1,…,Dm be v-proper constructions of objects of the respec-
tive types β1,…,βm. Then the λα-Closure [λα x1…xm Y] v-constructs a 
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degenerate function f/(α β1…βm) due to Y →v γ and α ≠ γ, and β-reduc-
tion by name, symbolized thus:  

  [[λα x1…xm Y] D1,…,Dm] →β Y(x1:D1,…,xm:Dm) 
 is not a valid conversion.  

 Proof 
By assumption, the left-hand side is the procedure of applying a degen-
erate function to a tuple-argument provided by D1,…,Dm. Since a de-
generate function does not have any value at any argument, this proce-
dure is v-improper by failing to produce any value. Yet the right-hand 
side procedure is proper by assumption.   

 Fortunately, β-conversion by value is unaffected by this kind of inva-
lidity. According to Def. 3, β-conversion by value is applicable only if type 
α is identical to type γ. If they are not, β-conversion by value would not be 
valid, either. Recall the Composition (5). Reducing this Composition by 
value, and at the same time ignoring the necessary condition α = γ, would 
result in:  

 [[λτ x [0= 00 x]] 02] ⇒β 
2[0Sub [0Tr 02] 0x 0[0= 00 x]] 

While the left-hand side is improper, because the λτ-Closure constructs a 
degenerate function of type (ττ), there is no logical reason for the right-
hand side to be improper. The right-hand side construction constructs the 
truth-value F. This is because the result of the substitution is the Compo-
sition [0= 00 02], the execution of which yields F. In other words, the 
following constructions are equivalent by constructing the same truth-
value F: 

 2[0Sub [0Tr 02] 0x 0[0= 00 x]]  
 20[0= 00 02]  
 [0= 00 02] 

 Claim 5 
Let λα-Closure [λα x1…xm Y] v-construct a degenerate function  
f/(α β1…βm) due to Y →v γ and α ≠ γ. Then β-reduction by value:  

  [[λα x1…xm Y] D1,…,Dm] ⇒β  
2[0Sub [0Tr D1] 0x1 … [0Sub [0Tr Dn] 0xn 

0Y]] 
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 is not applicable.  

 Proof 
According to Def. 3, in order that the rule of β-reduction by value be 
applicable, the types α and γ must be identical, which they fail to be 
here.   

 Let us now examine the validity of βr-reduction when the λα-Closure  
[λα x1…xm Y] v-constructs a function that is degenerate because Y →v γ,  
α ≠ γ. Consider again the λτ-Closure [λτ x [0= 00 x]]. Composing this Clo-
sure with variable y →v τ, we obtain: 

 [[λτ x [0= 00 x]] y] ⇒βr [0= 00 y] 

Unfortunately, the Composition [0= 00 y] is not v-improper for any v, while 
the redex [[λτ x [0= 00 x]] y] is v-improper for any v.  

 Claim 6 
Let λα-Closure [λα x1…xm Y] v-construct a degenerate function  
f/(α β1…βm) due to Y →v γ where γ ≠ α. Further, let Y be v-proper for 
any valuation v, and let y1,…,ym be variables ranging over the respective 
types β1,…,βm. Then the restricted βr-reduction by name:  

  [[λα x1…xm Y] y1,…,ym] →β Y(x1:y1,…,xm:ym) 
 is not a valid conversion.  

Proof is obvious. 

4. Concluding remarks 

 Above we have examined the conditions for the validity of the rule of 
β-reduction in the hyperintensional, typed λ-calculus of partial functions. 
While unconditional β-reduction by name is not a strictly equivalent trans-
formation in the logic of partial functions, β-reduction by value and re-
stricted β-reduction by name are strictly equivalent, hence valid conver-
sions. If reduction by name is to be validly applied, then none of the con-
stituents of the application procedure must be v-improper. This is the case 
of restricted βr-reduction, which merely substitutes variables for λ-bound 
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variables of the same respective types. Such a reduction is often applied in 
the analysis of empirical natural-language expressions.  
 In current TIL as expounded in Duží et al. (2010) and later, only  
λ-Closure has been considered while Tichý (1988) defined λα-Closure,  
[λα x1…xm Y]. We showed that Tichý’s definition leaves room for a pro-
cedure that produces a degenerate function even if Y is not v-improper for 
any valuation v. This interpretation is, however, fatal for β-reduction. The 
rule of β-reduction by value is not applicable, and the rule of restricted  
βr-reduction is not valid even in case Y is not v-improper for any v, but Y 
is typed to v-construct objects of a type different from α. For this reason 
we recommend working only with λ-Closure, that is, with a λα-Closure  
[λα x1…xm Y] such that Y is typed to v-construct objects of type α.  
 For background, in programming languages the difference between  
β-reduction by name and by value revolves around the choice of evalua-
tion strategy. Historically, call-by-value and call-by-name date back to 
Algol 60, a language designed in the late 1950s. The difference between 
call-by-name and call-by-value is often called passing by reference vs. 
passing by value, respectively. Strangely enough, purely functional pro-
gramming languages such as Clean and Haskell use call-by-name. In our 
opinion, call by value would be a better evaluation strategy. For instance, 
Java manipulates objects by reference. However, Java does not pass ar-
guments by reference, but by value. Call-by-value is not a single evalua-
tion strategy, but rather a cluster of evaluation strategies in which a func-
tion’s argument is evaluated before being passed to the function. In call-
by-reference evaluation (also referred to as call-by name or pass-by-ref-
erence), a calling procedure receives an implicit reference to the argu-
ment sub-procedure. This typically means that the calling procedure can 
modify the argument sub-procedure. A call-by-reference language makes 
it more difficult for a programmer to track the effects of a procedure call, 
and may introduce subtle bugs.  
 Our proposal amounts to a logical specification of an evaluation strat-
egy by-value as adapted to TIL. We have also developed a computational 
variant of TIL, the so-called TIL-Script language. For the reasons set 
out above, the grammar of the TIL-Script language does not make it 
possible to define λα-Closure, hence only λ-Closure is used. Finally, only 
the call-by-value reduction strategy is applied, which is thus universally 
applicable and valid.  
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