Detail príspevku/publikácie

Reliabilism, Intuition, and Mathematical Knowledge

Filozofia, 2008, roč. 63, č. 8, s. 715-723.
Súbor na stiahnutie: PDF*
BibTex EndNote Tagged EndNote XML RIS

Štatistika dokumentu:

Počet prístupov: 864
Počet prístupov dnes: 1
Naposledy zobrazené: 03.04.2020 - 13:05
Počet stiahnutí PDF: 414

Abstrakt

It is alleged that the causal inertness of abstract objects and the causal conditions of certain naturalized epistemologies precludes the possibility of mathematical know- ledge. This paper rejects this alleged incompatibility, while also maintaining that the objects of mathematical beliefs are abstract objects, by incorporating a naturalistically acceptable account of ‘rational intuition.’ On this view, rational intuition consists in a non-inferential belief-forming process where the entertaining of propositions or certain contemplations results in true beliefs. This view is free of any conditions incompatible with abstract objects, for the reason that it is not necessary that S stand in some causal relation to the entities in virtue of which p is true. Mathematical intuition is simply one kind of reliable process type, whose inputs are not abstract numbers, but rather, contemplations of abstract numbers.

*Príspevok je chránený zákonom o autorskom práve a právach súvisiacich s autorským právom (autorský zákon).